

Figure 2: Mountain Car (Residual Gradient)

Figure 3: Mountain Car (Sarsa(λ))

over 10 trials, again with standard deviations shown by the
shaded regions. For the Sarsa(λ) experiments we include re-
sults for Natural Actor-Critic (Peters and Schaal 2008), to
provide a comparison with another approach to applying
natural gradients to reinforcement learning. However, for
these experiments we do not include the standard deviations
because they make the figures much harder to read. We used
a soft-max policy with Natural Actor-Critic (NAC).

Mountain Car
Mountain car is a simple simulation of an underpowered car
stuck in a valley; full details of the domain can be found in
the work of Sutton and Barto (1998). Figures 2 and 3 give
the results for each algorithm on mountain car. The linear
time natural residual gradient and Sarsa(λ) algorithms take
longer to learn good policies than the quadratic time natu-
ral algorithms. One reason for the slower initial learning of
the linear algorithms is that they must first build up an esti-
mate of the w vector before updates to the value function

Figure 4: Cart Pole (Residual Gradient). Same legend as Fig-
ure 2

parameters become meaningful. Out of all the algorithms
we found that the quadratic time Natural Sarsa(λ) algorithm
performed the best in mountain car, reaching the best policy
after just two episodes.

Cart Pole Balancing
Cart pole balancing simulates a cart on a short one dimen-
sional track with a pole attached with a rotational hinge, and
is also referred to as the inverted pendulum problem. There
are many varieties of the cart pole balancing domain, and we
refer the reader to Barto, Sutton, and Anderson (1983) for
complete details. Figures 4 and 5 give the results for each
algorithm on cart pole balancing. In the cart pole balancing
domain the two quadratic algorithms, Natural Sarsa(λ) and
Natural RG perform the best. Again, the linear algorithm,
takes a slower start as it builds up an estimate of w, but
converges well above the non-natural algorithms and very
close to the quadratic ones. Natural Sarsa(λ) reaches a near
optimal policy within the first couple of episodes, and com-
pares favorably with the heavily optimized Sarsa(λ), which
does not even reach the same level of performance after 100
episodes.

Visual Tic-Tac-Toe
Visual Tic-Tac-Toe is a novel challenging decision problem
in which the agent plays Tic-tac-toe (Noughts and crosses)
against an opponent that makes random legal moves. The
game board is a 3×3 grid of handwritten letters (X, O, and B
for blank) from the UCI Letter Recognition Data Set (Slate
1991), examples of which are shown in Figure 8. At every
step of the episode, each letter of the game board is drawn
randomly with replacement from the set of available hand-
written letters (787 X’s, 753 O’s, and 766 B’s). Thus, it is
easily possible for the agent to never see the same handwrit-
ten “X”, “O”, or “B” letter in a given episode. The agent’s
state features are the 16 integer valued attributes for each
of the letters on the board. Details of the data set and the
attributes can be found in the UCI repository.

1769

Figure 5: Cart Pole (Sarsa(λ))

Figure 6: Visual Tic-Tac-Toe Experiments

There are nine possible actions available to the agent, but
attempting to play on a non-blank square is considered an il-
legal move and results in the agent losing its turn. This is par-
ticularly challenging because blank squares are marked by a
“B”, making recognizing legal moves challenging in and of
itself. The opponent only plays legal moves, but chooses ran-
domly among them. The reward for winning is 100, −100
for losing, and 0 otherwise.

Figure 6 gives the results comparing Natural-LT Sarsa and
Sarsa(λ) on the visual Tic-tac-toe domain using the artificial
neural network described previously. These results show lin-
ear natural Sarsa(λ) in a setting where it is able to account
for the shape of a more complex value function parame-
terization, and thus confer greater improvement in conver-
gence speed over non-natural algorithms. We do not com-
pare quadratic time algorithms due to computational limits.

Figure 7: Acrobot Experiments (TDC)

164 P.W. FREY AND D.J. SLATE

A A2fAAaaA dA
BB B BBB D
CC C Cc cccc (I
aPP F F FFF

Ssg sSJa5
Xx rXxXXzf2

Figure 1. Examples of the character images generated by "warping" parameters.

to right at all vertical positions within the box. This measure distinguishes between
letters like " W " or " M " and letters like ' T ' or "L."

14. The sum of the vertical positions of edges encountered as measured in 13 above. This
feature will give a higher value if there are more edges at the top of the box, as in
the letter "Y."

164 P.W. FREY AND D.J. SLATE

A A2fAAaaA dA
BB B BBB D
CC C Cc cccc (I
aPP F F FFF

Ssg sSJa5
Xx rXxXXzf2

Figure 1. Examples of the character images generated by "warping" parameters.

to right at all vertical positions within the box. This measure distinguishes between
letters like " W " or " M " and letters like ' T ' or "L."

14. The sum of the vertical positions of edges encountered as measured in 13 above. This
feature will give a higher value if there are more edges at the top of the box, as in
the letter "Y."

Figure 8: Visual Tic-Tac-Toe example letters

Acrobot
Acrobot is another commonly studied reinforcement learn-
ing task in which the agent controls a two-link under actu-
ated robot by applying torque to the lower joint with the goal
of raising the top of the lower link above a certain point. See
Sutton and Barto (1998) for a full specification of the do-
main and its equations of motion. To evaluate the off-policy
Natural TDC algorithm we first generated a fixed policy
by online training of a hand tuned Sarsa(λ) agent for 200
episodes. We then trained TDC and Natural TDC for 10000
episodes in acrobot following the previously learned fixed
policy. We evaluated an algorithm’s learned value function
every 100 episodes by sampling states and actions randomly
and computing the true expected undiscounted return using
Monte Carlo rollouts following the fixed policy. Figure 7
shows the MSE between the learned values and the true ex-
pected return.

Natural TDC clearly out performs TDC, and in this ex-
periment converged to much lower MSE. Additionally, we
found TDC to be sensitive to the step-sizes used, and saw
that Natural TDC was much less sensitive to these parame-
ters. These results show that the benefits of natural temporal
difference learning, already observed in the context of con-
trol learning, extend to TD-learning for value function esti-
mation as well.

Discussion and Conclusion
We have presented the natural residual gradient algorithm
and proved that it is covariant. We suggested that the tem-
poral difference learning metric tensor, derived for natural
residual gradient, can be used to create other natural tempo-

1770

ral difference learning algorithms like natural Sarsa(λ) and
natural TDC. The resulting algorithms begin with the iden-
tity matrix as their estimate of the (inverse) metric tensor.
This means that before an estimate of the (inverse) met-
ric tensor has been formed, they still provide meaningful
updates—they follow estimates of the non-natural gradient.

We showed how the concept of compatible function ap-
proximation can be leveraged to create linear-time natural
residual gradient and natural Sarsa(λ) algorithms. However,
unlike the quadratic-time variants, these linear-time variants
do not provide meaningful updates until the natural gradient
has been estimated. As a result, learning is initially slower
using the linear-time algorithms.

In our empirical studies, the natural variants of all three
algorithms outperformed their non-natural counterparts on
all three domains. Additionally, the quadratic-time variants
learn faster initially, as expected. Lastly, we showed empiri-
cally that the benefits of natural gradients are amplified when
using non-linear function approximation.

Appendix A
Proof of Covariant Theorem: The following theorem
and its proof closely follow and extend the foundations laid
by Bagnell and Schneider (2003) and later clarified by Pe-
ters and Schaal (2008) when proving that the natural policy
gradient is covariant.

No algorithm can be covariant for all parameterizations.
Thus, constraints on the parameterized functions that we
consider are required.
Property 1. Functions g : Φ×X → R, and h : Θ×X → R
are two instantaneous loss functions parameterized by φ ∈
Φ and θ ∈ Θ respectively. These correspond to the loss func-
tions ĝ(φ) = Ex∈X [g(φ, x)] and ĥ(θ) = Ex∈X [h(θ, x)].
For brevity, hereafter, we suppress the x inputs to g and h.
There exists a differentiable function, Ψ : Φ→ Θ, such that
for some φ ∈ Φ, we have g(φ) = h(Ψ(φ)) and the Jacobian
of Ψ is full rank.

Definition 1. Algorithm A is covariant if, for all g, h, Ψ,
and φ satisfying Property 1,

g(φ+ ∆φ) = h(Ψ(φ) + ∆θ), (13)

where φ+ ∆φ and Ψ(φ) + ∆θ are the parameters after an
update of algorithm A.

Lemma 1. An algorithm A is covariant for sufficiently
small step-sizes if

∆θ =
∂Ψ(φ)

∂φ
∆φ. (14)

Proof. Let JΨ(φ) be the Jacobian of Ψ(φ), i.e., JΨ(φ) =
∂Ψ(φ)
∂φ . As such, it maps tangent vectors of h to tangent vec-

tors of g, such that

∂g(φ)

∂φ
= JΨ(φ)

∂h(Ψ(φ))

∂Ψ(φ)
, (15)

when g(φ) = h(Ψ(φ)), as JΨ(φ) is a tangent map (Lee 2003,
p. 63).

Taking the first order Taylor expansion of both sides of
(13), we obtain

h(Ψ(φ)) +∂h(Ψ(φ))ᵀ

∂Ψ(φ) ∆θ

+ O(‖∆θ‖2)
=

g(φ) +∂g(φ)ᵀ

∂φ ∆φ

+O(‖∆φ‖2).

For small step-sizes, α > 0, the squared norms become neg-
ligible, and because g(φ) = h(Ψ(φ)), this simplifies to

∂h(Ψ(φ))ᵀ

∂Ψ(φ)
∆θ =

∂g(φ)ᵀ

∂φ
∆φ,

=

(
JΨ(φ)

∂h(Ψ(φ))

∂Ψ(φ)

)ᵀ

∆φ,

=
∂h(Ψ(φ))ᵀ

∂Ψ(φ)
Jᵀ

Ψ(φ)∆φ. (16)

Notice that (16) is satisfied by ∆θ = Jᵀ
Ψ(φ)∆φ, and thus if

this equality holds then A is covariant.

Theorem 1. The natural gradient update ∆θ =
−G−1

θ ∇h(θ) is covariant when the metric tensor Gθ is
given by

Gθ = E
x∈X

[
∂h(θ)

∂θ

∂h(θ)ᵀ

∂θ

]
. (17)

Proof. First, notice that the metric tensor Gφ is equivalent
to Gθ with JΨ(φ) twice as a factor,

Gφ = E
x∈X

[
∂g(φ)

∂φ

∂g(φ)ᵀ

∂φ

]
,

= E
x∈X

[
(JΨ(φ)

∂h(Ψ(φ))

∂θ
)(JΨ(φ)

∂h(Ψ(φ))

∂θ
)ᵀ
]
,

= E
x∈X

[
JΨ(φ)

∂h(Ψ(φ))

∂θ

∂h(Ψ(φ))

∂θ

ᵀ

Jᵀ
Ψ(φ)

]
,

= JΨ(φ) E
x∈X

[
∂h(Ψ(φ))

∂θ

∂h(Ψ(φ))

∂θ

ᵀ]
Jᵀ

Ψ(φ),

= JΨ(φ)GθJ
ᵀ
Ψ(φ). (18)

We show that the right hand side of (14) is equal to the
left, which, by Lemma 1, implies that the natural gradient
update is covariant.

Jᵀ
Ψ(φ)∆φ = Jᵀ

Ψ(φ)αG
−1
φ ∇g(φ),

= Jᵀ
Ψ(φ)αG

+
φ∇g(φ), (19)

= αJᵀ
Ψ(φ)

(
JΨ(φ)GθJ

ᵀ
Ψ(φ)

)+

JΨ(φ)∇h(Ψ(φ)),

= αJᵀ
Ψ(φ)(J

ᵀ
Ψ(φ))

+G+
θ J

+
Ψ(φ)JΨ(φ)∇h(Ψ(φ)).

Since JΨ(φ) is full rank, J+
Ψ(φ) is a left inverse, and thus

Jᵀ
Ψ(φ)∆φ = αG−1

θ ∇h(Ψ(φ)),

= ∆θ.

Notice that, unlike the proof that the natural actor-critic
using LSTD is covariant (Peters and Schaal 2008), our proof
does not assume that JΨ(φ) is invertible. Our proof is there-
fore more general, since it allows |φ| ≥ |θ|.

1771

References
Amari, S., and Douglas, S. 1998. Why natural gradient?
In Proceedings of the 1998 IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP ’98),
volume 2, 1213–1216.
Amari, S. 1998. Natural gradient works efficiently in learn-
ing. Neural Computation 10:251–276.
Bagnell, J. A., and Schneider, J. 2003. Covariant policy
search. In Proceedings of the International Joint Conference
on Artificial Intelligence, 1019–1024.
Baird, L. 1995. Residual algorithms: reinforcement learning
with function approximation. In Proceedings of the Twelfth
International Conference on Machine Learning.
Barto, A. G.; Sutton, R. S.; and Anderson, C. W. 1983. Neu-
ronlike adaptive elements that can solve difficult learning
control problems. IEEE Transactions on Systems, Man, and
Cybernetics 13(5):834–846.
Bergstra, J., and Bengio, Y. 2012. Random search for hyper-
parameter optimization. In Journal of Machine Learning
Research.
Bhatnagar, S.; Sutton, R. S.; Ghavamzadeh, M.; and Lee,
M. 2009. Natural actor-critic algorithms. Automatica
45(11):2471–2482.
Degris, T.; Pilarski, P. M.; and Sutton, R. S. 2012. Model-
free reinforcement learning with continuous action in prac-
tice. In Proceedings of the 2012 American Control Confer-
ence.
Kakade, S. 2002. A natural policy gradient. In Advances in
Neural Information Processing Systems, volume 14, 1531–
1538.
Konidaris, G. D.; Kuindersma, S. R.; Grupen, R. A.; and
Barto, A. G. 2012. Robot learning from demonstration by
constructing skill trees. volume 31, 360–375.
Kushner, H. J., and Yin, G. 2003. Stochastic Approximation
and Recursive Algorithms and Applications. Springer.
Lee, J. M. 2003. Introduction to Smooth Manifolds.
Springer.
Morimura, T.; Uchibe, E.; and Doya, K. 2005. Utilizing the
natural gradient in temporal difference reinforcement learn-
ing with eligibility traces. In International Symposium on
Information Geometry and its Application, 256–263.
Peters, J., and Schaal, S. 2008. Natural actor-critic. Neuro-
computing 71:1180–1190.
Slate, D. 1991. UCI machine learning repository.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learn-
ing: An Introduction. Cambridge, MA: MIT Press.
Sutton, R. S.; McAllester, D.; Singh, S.; and Mansour, Y.
2000. Policy gradient methods for reinforcement learning
with function approximation. In Advances in Neural Infor-
mation Processing Systems 12, 1057–1063.
Sutton, R. S.; Maei, H. R.; Precup, D.; Bhatnagar, S.; Silver,
D.; Szepesvári, C.; and Wiewiora, E. 2009. Fast gradient-
descent methods for temporal-difference learning with lin-
ear function approximation. In Proceedings of the 26th An-

nual International Conference on Machine Learning, 993–
1000. ACM.

1772

