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Abstract

We consider the problem of off-policy policy selection in reinforcement learning settings: using historical data generated
from running some policy to compare a set of two or more new policies. Policy selection methods can be used, for exam-
ple, to decide which policy should be deployed next when two or more batch reinforcement learning algorithms suggest
different policies or when we want to compare a policy derived from data to a policy constructed by an expert. We show
that existing approaches to policy selection based on importance sampling can be unfair: they can select the worse of two
policies more often than not. We present two illustrative examples to show that this unfairness can adversely impact
policy selection scenarios that may arise in practical settings. We then give sufficient conditions for when we can apply
existing techniques to do policy selection fairly. Our hope is that this work will lead to more researchers thinking about
the problems that arise in off-policy policy selection and how we may mitigate these problems, which we believe has
been largely ignored in the literature.
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1 Introduction

In this paper, we consider the problem of off-policy policy selection in reinforcement learning settings: using historical data
generated from running some policy to compare a set of two or more new policies. Policy selection methods can be used,
for example, to decide which policy should be deployed next when two or more batch reinforcement learning algorithms
suggest different policies or when we want to compare a policy derived from data to a policy constructed by an expert.
Importance sampling, a technique for predicting the performance of one policy using data generated from running a
different policy [4], is at the foundation of many policy selection and policy search algorithms [3, 1, 2, 5, 6]. In this paper,
we introduce the notion of fairness for policy selection algorithms, which we believe has not been considered in prior
work. In the case of comparing two policies, we say that a policy selection algorithm is fair if it selects the better of the
two policies more often than it selects the worse of the two policies. The primary contribution of this paper is that we
show that standard policy selection algorithms based on importance sampling are often unfair. We illustrate this with
two concrete examples of settings that may arise in practice. We then present sufficient conditions for when we can use
importance sampling to make fair comparisons, which is a first step towards fair policy selection.

2 Background

2.1 Reinforcement Learning

We consider sequential decision making settings in stochastic domains. In such domains, an agent interacts with
the environment, and in doing so, it generates a trajectory, τ , (O0, A1, R1, O1, A2, R2, . . . , AT , RT , OT ), which is a
sequence of observations, actions, and rewards, with trajectory length T . The observations and rewards are gener-
ated by the environment according to a stochastic process that is unknown. The agent chooses actions according
to a stochastic policy π, which is a conditional probability distribution over actions At given the partial trajectory
τ1:t−1 , (O1, A1, R1, O2, A2, R2, . . . , Ot−1) of prior observations, actions, and rewards. The value of a policy π, V π , is
the expected sum of rewards when the policy is used:

V π , E

[
T∑
t=1

Rt

∣∣∣∣∣ τ ∼ π
]

The agent’s goal is to find and execute a policy with a large value.

In this paper, we consider offline (batch) reinforcement learning where we have a batch of data, called historical data,
that was generated from some known behavior policy πb. We are interested in doing batch off-policy policy selection:
identifying a good policy for use in the future based on estimating its performance using the data from πb. This typi-
cally involves policy estimation or evaluation of a policy πe. If πe = πb this is known as on-policy policy evaluation.
Otherwise it is known as off-policy policy evaluation.

2.2 Importance Sampling

In this paper, we focus on estimators that use importance sampling for off-policy policy selection. Model-based off-policy
estimators tend to have lower variance than importance-sampling-based estimators, but at the cost of being biased and
asymptotically incorrect (not consistent estimators of V π) [3]. In contrast, importance sampling-based estimators can
provide unbiased estimates of the value of a policy.

Suppose we have a batch of trajectories τ1, τ2, . . . , τn sampled independently from executing a behavior policy πb, but we
want to estimate the value of another policy πe. We can use the importance sampling (IS) estimator [4], which is given
by:

V̂ πe

IS ,
1

n

n∑
i=1

wi

Ti∑
t=1

Ri,t

where

wi =

∏Ti

t=1 πe(ai,t|τi,1:t−1)∏Ti

t=1 πb(ai,t|τi,1:t−1)

The IS estimator is an unbiased and strongly consistent estimator of V πe if πe(a|τ1:t−1) = 0 for all actions, a, and partial
trajectories, τ1:t−1, where πb(at|τ1:t−1) = 0. However, the IS estimator often has very large variance (which is at the
root of why it can be unfair for policy selection, as we will show below). The weighted importance sampling (WIS)
estimator is another estimator where instead of dividing the sum of the IS estimates for each trajectory by the number of
trajectories, we divide by the sum of the importance weights as follows:

V̂ πe

WIS ,
1∑n
i=1 wi

n∑
i=1

wi

Ti∑
t=1

Ri,t
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Figure 1: Domain in Section 3.1. The agent is in a chain of length 10. In each state, the agent can either go right (aR)
which progresses the agent along the chain and gives a reward of 0 unless the agent is in s10, in which case it gives a
reward of 10 (and keeps the agent in the s10), or go left (aL), which takes the agent back to state s1 and gives a reward of
1.

This estimator has less variance than the importance sampling estimator, but at the expense of adding some bias.

2.3 Policy Selection

A policy selection algorithm is any algorithm that takes as input an arbitrary number of policies, and outputs one of
those policies. Any estimator used for policy evaluation can be transformed into a policy selection algorithm by simply
evaluating each input policy and selecting the one that performs best under the estimator. Because policy evaluation is
often used to do policy selection, the problem of policy selection has not been adequately studied independent of policy
evaluation to our knowledge, even though it is perhaps the more important of the two problems since policy selection
underlies the decision of what policy to use in practice. There are at least two properties that are desirable to have in a
policy selection algorithm:

• Consistency: In the limit as the number of trajectories of historical data goes to infinity, the algorithm should
always select the policy that has the largest value.

• Fairness: With any amount of data, the probability that the algorithm selects a policy with the largest value
should be greater than the probability that it selects a policy that does not have the largest value. When choosing
between two policies, this implies that the algorithm should choose the better policy at least half the time.

Since model-based approaches to policy evaluation are biased when the model class is inaccurate, they also do not satisfy
these properties in general. For example, comparing the estimated value of the optimal policy from a set of models is
both inconsistent and unfair (as even in the limit of infinite data, it may always pick the wrong policy) [3]. Importance
sampling on the other hand, is consistent when used for policy selection as it is an unbiased and consistent estimator of
the value function (so in the limit of infinite data, using IS will always lead to choosing the better policy); however we
now show that it is not a fair policy selection algorithm.

3 Unfairness of Importance Sampling

We will give two examples that show the unfairness of importance sampling and how they can arise in counterintuitive
ways in practically interesting settings, motivating why we should care about satisfying fairness.

3.1 Example 1: Bias Towards Myopic Policies

In this example, we show that using IS for policy selection could be biased in favor of myopic policies, which could be
of great practical concern. This may come up in practical settings where we are interested in comparing more heuristic
methods of planning (e.g., short look-ahead) to full-horizon planning methods. If we have the correct model class, full
horizon planning is expected to be optimal, however it is both computationally expensive (so possibly not even tractable)
and potentially sub-optimal if our model class is incorrect (e.g., our state representation is inaccurate or the world is a
partially observable Markov decision process but we are modeling it as a fully observable Markov decision process).
Thus, we may be interested in comparing full-horizon planning (or an approximation thereof) to myopic planning, and
the following example shows that IS can sometimes favor policies resulting from myopic planning.

Consider the domain given in Figure 1. Now suppose we have data collected from a behavior policy πb that takes each
action with probability 0.5 and all trajectories have length 200. We want to compare two policies: πmyopic which takes aL
with probability 0.99 and aR with probability 0.01, and πopt which takes aL with probability 0.01 and aR with probability
0.99. (Note: the actual optimal policy is to always take aR, for which πopt is a slightly stochastic version.) Notice that
the probability distribution of importance weights is the same for both πmyopic and πopt, so both are equally close to the
behavior policy in terms of probabilities over trajectories. However, for datasets that are not large enough, the importance
sampling estimate will be larger for πmyopic than for πopt, even though it is clearly the worse policy. In particular, when
we have 1000 samples, (1) around 60% of the time, the importance sampling estimate of πmyopic is larger than that of πopt,
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R(aX) = 1

R(aY ) = 0
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with probability 0.5 with probability 0.5

Figure 2: Domain in Section 3.2. The agent is placed uniformly at random in either a chain of length 2 or a chain of length
L. At each time step, action aX deterministically gives a reward of 1 to the agent if the agent is in the chain of length 2
and 0 otherwise, and action aY deterministically gives a reward of 1 to the agent if the agent is in the chain of length L
and 0 otherwise. Both actions progress the agent along the chain.

V̂MC V̂IS V̂WIS

πX 1.39 0.98 1.98
πY 39.52 0.010 0.020

Table 1: Median estimates, out of 100 simulations, of different estimators using 100 samples of πX and πY in the domain
in Section 3.2.

and (2) around 95% of the time, the weighted importance sampling estimate of πmyopic is larger than that of πopt. Thus
both the IS and WIS estimators are unfair for policy selection.

The reason IS is unfair in this case is because one policy only gives high rewards in events that are unlikely under the
behavior policy, and hence the behavior policy often does not see the high rewards of this policy as compared to a myopic
policy. However, note that these events are still likely enough that we can build a model that would suggest choosing
the optimal policy. IS is unable to detect simple patterns that a model-based approach (or even a human briefly looking
at the data) would easily infer; this is the cost of having an evaluation technique that places virtually no assumptions on
policies.

3.2 Example 2: Systematic Bias Towards Shorter Trajectories

We now show another practically important example where importance sampling can systematically favor policies that
assign higher probability to shorter trajectory lengths (in domains where the length of each trajectory may vary). This is
a problem that could arise in many practical domains, for example domains where a user is free to leave the system at
any time, such as a student doing problems in an educational game or a user chatting with a dialogue system. Moreover,
this is especially worrisome when there is some correlation between how long a user stays in the system and the reward
that the system obtains. In many cases the reward might be directly proportional to the number of interactions the user
has with the system. Even if that is not the case, in many situations, worse policies might bias users to leave the system
earlier. For example, in an educational game whose goal is to maximize student learning, we can imagine a policy that
gives levels that are too difficult will lead students to leaving the game and hence learning very little, whereas a policy
that gives an optimal progression of levels might result in the student to play the game for a longer duration of time
and hence learn more. Thus, it is particularly problematic that importance sampling can favor policies that assign higher
probability to shorter trajectories even when shorter trajectories are worse than longer ones, which the following example
shows to be true.

Consider the domain given in Figure 2. Now suppose we have data collected from a behavior policy πb that takes each
action with probability 0.5. We want to compare two policies: πX , which takes action aX with probability 0.99, and πY ,
which takes action aY with probability 0.99. Clearly πY is the better policy, because it incurs a lot of reward when we
encounter trajectories of length 80, while only losing out on a small reward when encountering the short trajectories.
Table 1 shows the median estimate, out of 100 simulations, of the Monte Carlo estimator (i.e., the standard on-policy
estimator V̂ πe

MC , 1
n

∑n
i=1

∑Ti

t=1Ri,t), as well as the median IS and WIS estimates using 1000 samples each. We find that
while πY is, in actuality, much better, IS essentially only weighs the shorter trajectories, so the estimates only reflect
how well the policies do on those trajectories. WIS simply (almost) doubles the estimates because half of the samples
have extremely low importance weights. So why does this occur? When using IS in settings where trajectories can have
varying lengths, the importance weight of shorter trajectories can be much larger than for longer trajectories, because for
longer trajectories, we are multiplying more ratios of probabilities that are more often smaller than one. This happens
even if the policy we are evaluating is more likely to produce a longer trajectories than a shorter one (because there are
exponentially many longer trajectories and so each individual trajectory has an exponentially smaller weight).
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4 Guaranteeing Fairness

We will now show conditions under which we can guarantee fairness when using importance sampling for policy selec-
tion.
Theorem 4.1. Using importance sampling for policy selection when we have n samples from the behavior policy is fair provided
that

wπ1

MAXV
π1

MAX + wπ2

MAXV
π2

MAX ≤ |V
π1 − V π2 |

√
2n

ln 2

where wπMAX is the largest importance weight for policy π and V πMAX is the largest possible value for policy π. In other words,
Algorithm 1 is fair provided that ε ≤ |V π1 − V π2 | and δ ≤ 0.5.

Theorem 4.1 can be shown with a simple application of Hoeffding’s inequality. Alternatively, we can use other concentra-
tion inequalities to obtain fair algorithms of a similar form. Additionally, we can extend the algorithms to policy selection
with more than two policies by applying a union bound, but that is omitted here for brevity. Notice that Theorem 4.1 tells
us that as long as neither policy is too far from the behavior policy in terms of the largest possible importance weight,
then we can guarantee fairness, which intuitively makes sense; we can only fairly compare policies that are similar to
the behavior policy. However, how far we stray will also depend on how different the values of the policies are from
each other. This is a quantity we do not know, so we must pick an ε where either we think ε ≥ |V π1 − V π2 | or we are
comfortable with the possibility of choosing a policy that is worse than ε from the better policy. Theorem 4.1 helps us
better understand when we can guarantee fairness and gives hope that importance sampling is still useful for policy
selection, but there is still much to do before we can implement fair policy selection to obtain decent policies that are
very different from the behavior policy, which is what we would often like in practice. Our hope is that our paper will
lead to more researchers thinking about the problems that arise in off-policy policy selection and how we may mitigate
these problems, which we believe has been largely ignored in the literature.

Algorithm 1 Fair Policy Selection
Input: π1, π2, V π1

MAX , V
π2

MAX , ε, δ
τ1, τ2, . . . , τn ∼ πb

if wπ1

MAXV
π1

MAX + wπ2

MAXV
π2

MAX ≤ ε
√

2n
ln 1/δ then

return max(V̂ π1

IS , V̂
π2

IS )
else

return No Fair Comparison
end if
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