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ABSTRACT

Contrast effects are caused by the tendency for mental evaluations
of objects to be influenced by one or more contrasting objects. As
this cognitive bias can unduly influence users’ behavior, we present
a method for preventing recommender systems from exploiting
contrast effects. We then apply our method to a simulated online
storefront and show that it is able to prevent contrast effect ex-
ploitation while maximizing the conversion rate of users.
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1 INTRODUCTION

Recommender systems are often trained on simple metrics such as
click-through rate (the percentage of users who click on an ad) or
conversion rate (the percentage of users who buy the product). These
metrics do not necessarily capture user satisfaction. Like a shady
used car salesman, such systems will learn to use any mechanism at
their disposal to “make the sale,” without any regard for long-term
or ethical considerations. While superficially desirable, this can,
in the long run, drive away users and harm the reputation of the
seller. Therefore, in order to ensure that systems are connecting
users with products that will lead to high satisfaction, it is desirable
to prevent the systems from using such tactics [8].

One way that recommender systems can exploit users is by tak-
ing advantage of humans’ cognitive biases, which are a type of
systematic deviation from rational decision making [3]. Contrast
effects are one category of bias particularly relevant to the prob-
lem of online recommendations. Contrast effects come from the
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tendency for mental evaluations of objects to be influenced by one
or more contrasting objects [7]. For example, the compromise ef-
fect is the tendency of consumers to avoid the most expensive and
most inexpensive options, instead choosing items at a median price
point, regardless of the absolute scale of the pricing [9]. If a shady
used car salesman wanted to encourage the customer to purchase
a specific vehicle, they could show the customer a less expensive
and a more expensive vehicle in order to exploit this effect. Because
recommender systems often show users not just a single recom-
mendation, but a set of recommendations, contrast effects can be
similarly exploited in online recommendations.

We present a method for detecting contrast effects and allowing
the system implementer to control the extent to which the algorithm
is allowed to exploit them—at one extreme, completely preventing
the algorithm from exploiting contrast effects, and at the other,
allowing it to exploit them as much as possible. We demonstrate
the effectiveness of this algorithm on a simulated environment
based on a dataset of Amazon reviews [6].

2 BACKGROUND

We consider a recommender system for an online storefront. The
store contains some set of items, 7. At each timestep, ¢, the system
selects some subset of items, J;, based on some context vector, Xy,
which contains information about the customer and their current
browsing session. The system then selects a single item, I;, from this
subset. Finally, the system selects a contrast group, G;, containing
the target item and two similar items. We use G to represent the
set of all such groups, and G; to represent the set of all groups
containing item i. The selected item and the contrast group are then
displayed to the user. If the user purchases the item, the system
receives a reward, Ry, of 1, otherwise it receives a reward of 0. The
end-to-end system is shown in Figure 1.
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Figure 1: The three-phase recommender system.

We focus on the problem of selecting I; and G; given a subset of
items J;, and assume that 7; is chosen by some other subsystem.
Let 7; be the policy at time ¢ for selecting items and groups, such
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that 7y (13, I, G¢) = Pr(Iy,G¢|I;). Letr : 1,G — [0,1] be the
conversion rate, that is, the probability of the user purchasing the
item when shown item i and group g:
V(i,g) = E[Rtllt =1 Gt = g] (l)
The naive goal of the system is to choose a sequence of policies
that maximizes the expected sum of rewards, Ztho E[r(I, G¢)|mt],
where T is the lifetime of the system. We decompose the conversion
rate as the sum of two components, the “unbiased conversion rate,”
which represents the probability that the user would select item i
assuming that it was displayed independently of any other items,
and the “contrast effect,” which captures the impact of the group g
on the customer’s perception of i:
r(i,g) = ri (i) + b(i,g) . 2

—— ——
unbiased conversion rate  contrast effect

We propose to solve the optimization problem
max E[b(I,G)|x] 3)
1

st € argmax E[r;(D)|n']. 4)
n/

That is, we constrain the solution to first maximize the “unbiased”
conversion rate, r;(I), and maximize the contrast effect, b(I,G),
subject to this constraint. The difficulty comes from the fact that
we do not have unbiased samples of r;(I), only samples of r(I, G).

3 METHODOLOGY

The core idea of our approach is to estimate the unbiased conver-
sion rate for each item in the catalog by learning the bias function,
b(I,G), and extrapolating the unbiased conversation rate by com-
pensating for this bias. We will then combine this with a novel
variant of UCB in order to efficiently learn the unbiased conversion
rate. One of the basic assumptions of our approach is that because
contrast effects are universal human biases, they do not need to be
estimated for each individual item. Instead, it is possible to share
information between items and even between catalogs.

3.1 Distance Scores

For each contrast group, we compute a distance score,d : G — R,
which measures the similarity of the items in a given contrast
group using features available in the catalog. A single score is
computed for the group of three items. We then assume that the
biased conversion rate is a function of the following form:

7(i,9) = F(i) + b(d(9)), ®)
where i is an item and g is a contrast group. That is, it is some
function of the distance added to the unbiased conversion rate.
We then learn # and b using least squares regression. Once we
have learned these functions, we can simply choose an item in
arg max; ez, #(i) and a group inarg max, g l;(d(g)). Below, we will
discuss how these functions can be learned and how exploration
and learning can be balanced with exploitation in the online setting.

3.2 Bias Functions

For a simplified example of how this approach works, consider the
case shown in Figure 2. While this example is unlikely to accurately
reflect human biases, it shows the high-level idea of the approach.

Chris Nota, Georgios Theocharous, Michelle Saad, and Philip S. Thomas

—— biased conversion rate
—-=~ unbiased conversion rate
0.040 A @ contrast group

0.045 -

0.035 A

0.030 -

0.025 A

Conversion Rate

0.020 -

0.015 A

0.010 -

0.005 +— r T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Distance

Figure 2: A demonstrative (but unrealistic) example of how
the unbiased conversion rate could be estimated, if a dis-
tance score of 0 corresponded to “unbiased” behavior. The
dots represent the observed conversation rates for each con-
trast group containing the hypothetical item.
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Figure 3: A more plausible bias curve for a user. The dots
represent the observed conversation rates for each contrast
group containing a hypothetical item. If the items in the
group are too different or too similar to the target item, the
effect is not present. At some ideal “hot spot,” the effect is
maximized.

Each point represents a particular contrast group for a given item.
The x-axis represents the distance between the items in the group,
and the y-axis represents measurements of the biased conversion
rate from customer behavior. Suppose that as the distance between
the items in the group approaches 0, the customer behavior will
become more and more like that of a customer that was not shown
a contrast group at all, that is, the unbiased conversion rate. At
distance 0, the customer is simply shown three of the same item,
and grouping effects should not be present at all (note that this is for
illustrative purposes, and we do not assume this). By fitting a line to
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the measured points, we can extrapolate the unbiased conversion
rate by simply looking at the y-intercept.

What if distance 0 does not correspond to unbiased behavior?
Suppose unbiased behavior corresponds to some other arbitrary
distance value, such as 0.1. Because we assume the shape of the
curve (e.g., Figure 2 or Figure 3) is independent for all i given
the distance score, the “ordering” of the items does not depend
on which distance (if any) corresponds to an unbiased grouping.
We will next discuss more details about how this function can be
learned, including in the non-linear case.

3.3 Learning the Bias Function

In order to estimate the unbiased conversion rate for a given item,
our general approach is to try to estimate the biased conversion rate
for each item-group pair, (i, g), as a function of the distance, d(g),
and an independent parameter for each item, r;. In order to learn
more expressive functions of the distance, we use a basis expansion,
¢(d(g)), for example, the Fourier basis [5]. We estimate the biased
conversion rate as

#(i,9) = wl ¢(d(g)) +ri, (6)

where w is the learnable weight vector, and r; is the learnable item-
dependent scalar. Given some dataset of tuples, (i, g,r), where i is
an item, g is a contrast group, and r is 1 if the customer purchased
the item and 0 otherwise, 7 can be learned using any off-the-shelf
linear regression package. Note that w is shared between all items
and groups in the dataset. This means that the effects of contrast
bias do not have to be independently estimated for all items.

In order to learn the function above, at time ¢, we construct a
| I'| + M feature vector x; where M is the size of the basis expansion.
Xt is 1 if item i was chosen at time ¢ and 0 otherwise, and the
remaining elements are the elements of ¢(d(Gr)). We then learn
the parameters using ordinary least squares.

3.4 Debiasing UCB

In this section, we will extend the standard UCB1 [1] algorithm to
minimize the unbiased conversion rate, rather than the standard bi-
ased conversion rate. The vanilla UCB1 algorithm, at each timestep,
selects the item with the highest upper confidence bound according

to
2In) i, Si
UCB(i) = +C1,%, 7)
i

where y; is the observed conversion rate for item i, S; is the number
of times that item i has been recommended, I; is the set of items
available at time ¢, and C is a positive constant. The first term may
be thought of as an estimate of the value, and the second term
may be thought as an “exploration bonus.” Notice that as time goes
on, if item i is never recommended, then the exploration bonus
will continue to grow. This guarantees that as ¢ goes to infinity,
every item will be recommended an infinite number of times and
estimates of y; will converge to the true conversion rate by the law
of large numbers.

In our setting, r(i) cannot be estimated directly; rather, it must be
extrapolated. Instead of directly computing the confidence interval
using Hoeffding’s inequality, as in UCB1, we can instead compute
the uncertainty in the parameter b; for a given confidence level. By
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increasing the confidence level over time, for example, by choosing
a confidence level of 1 — 1/t, we can achieve the same effect of
guaranteeing that every item is eventually chosen. To compute
the upper confidence bound for the item-dependent parameter, r;,
we compute a t-test-style confidence interval over the regression
coefficients:

L5 Y1 (Re = #(I1,Gr))?

CIt(i, ) = ri + ti—an—2
? ’ Tx)~1
(xTx);;

. ®

where i is the item number, « is a confidence level, I; is the item
chosen at time ¢, G; is the group chosen at time ¢, R; is the reward
at time ¢, n is the number of time steps so far, and x is a matrix
containing the feature vectors for each timestep. We then simply
choose arg max; ¢ 7 CI* (i, ).

However, this only solves the problem of which item to choose.
In order to solve the full problem, we must also consider how to
choose the product grouping. Technically, the product grouping
does not affect the unbiased conversion rate directly, so according
to this metric, nearly any algorithm will do, with the caveat that it
must maintain the asymptotic guarantee that each group will be
chosen infinitely often. This is necessary in order to ensure that
the linear regression converges correctly. For example, consider an
algorithm which always chooses a grouping with a fixed distance
score (e.g., d = 0.5). With just one x-value, there would be many
solutions to the regression problem.

We propose to simply use standard UCB1 for choosing the prod-
uct groupings. In the case that UCBI1 is used for both the item
selection and the group selection, the resulting algorithm is simply
the UCT algorithm [4] and achieves the resulting convergence guar-
antees. However, if we replace the item selection algorithm with
our modified linear regression approach, we get a new algorithm,
Algorithm 1, that first attempts to minimize the debiased regret.

Algorithm 1: Debiased UCB
Initialize D = {}
foreach episode do
i = argmax; CI* (D, i, a;);

g: = choosegroup(iz);
d; = distance(g;);
r; = recommend(g;);
D — (i, dt,11);
t=t+1;

end foreach

The schedule for a; is a hyperparameter. As training progresses,
we want a higher and higher confidence level in order to ensure
sufficient explanation. In our experiments, we chose the schedule
ar=1-— %‘)’/t, where co and y are adjustable.

3.5 Adjusting the Exploitation Coefficient

Some implementers of this algorithm may wish to control the extent
to which the recommender system exploits contrast effects. For
example, we may wish to minimize the effects of contrast bias
when the cost (in terms of the biased regret) is low, but not when it
would cost a large number of sales. To achieve this, we introduce
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Figure 4: The unbiased regret for each algorithm.

an adjustable “exploitation” parameter, § € [0, 1], which trades
off between the biased and debiased algorithms, where f = 0 is
equivalent to debiased UCB and f§ = 1 is equivalent to standard
UCB. The algorithm works by taking a weighted average of the
debiased and standard confidence bounds, with f determining the
weight on each. That is, at each timestep we choose

arg max ((f)UCB(i) + (1 - B)CI* (i, a)), 9)
i
where UCB(i) is defined by Equation 7 and CI* by Equation 8.

4 EXPERIMENTS

In order to test the effectiveness of the debiasing UCB algorithm,
we implemented a recommendation system simulator based on
the Amazon review dataset [2, 6]. Product groupings were created
based on co-view information. Customer behavior was simulated
based on product review data. We simulated a Gaussian contrast
effect curve similar to Figure 3. A distance metric was created to
measure the similarity of the items in a product group based on
review data and pricing information. In each round, the simulator
selects a subset of items randomly. This is intended to reflect the
system selecting items based on customer context information. The
agent must select an item from this subset and then select a product
grouping based on this item.

The two primary metrics we consider are the “biased” and “unbi-
ased” regret. The biased regret is the difference between the conver-
sion rate for the best item/group pair available at a given time step
and the conversion rate for the item/group pair that the algorithm
actually chose, that is

max max r(i,g) — r (I, Gy). (10)
icl; geGi
The unbiased regret is the difference between the true unbiased
conversion rate and the unbiased conversion rate for the item the
algorithm chose:

Iilé:})t(r(i) —r(Ly). (11)

We compare the standard UCB1 algorithm, Algorithm 1 (“Debiased
UCB”), and the mixed algorithm with an exploitation coefficient of
P = 0.5. We averaged results over 10 trials.
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Figure 5: The biased regret for each algorithm.

4.1 Results

The unbiased regret is plotted over time in Figure 4 and the biased
regret is plotted in Figure 5. The standard algorithm, as expected,
nearly minimizes the biased regret, but the unbiased regret plateaus.
The biased and unbiased regret are correlated to some extent be-
cause some items are simply not likely to be purchased, regardless
of the contrast group. Similarly, the debiased algorithm minimizes
the debiased regret, while still substantially reducing the biased re-
gret. The mixed algorithm achieves a biased regret score essentially
on par with the standard algorithm, while still reducing the unbi-
ased regret. This means that there is, at least in these experiments,
no trade-off for using the mixed algorithm compared to the biased
algorithm. That is, the mixed algorithm “sells” as many items as
the biased algorithm while exploiting contrast effects less.

5 FUTURE WORK

While the simulator we used was based on a real-world dataset, the
contrast effect was simulated. One of the most important areas of
future work is to validated the existence of contrast effects in the
target setting, and to determine the effectiveness of the proposed
algorithm for realistic contrast effects.

6 CONCLUSIONS

We introduced the problem of contrast effect exploitation and de-
scribed a variant of UCB1 which prevents the recommender system
from exploiting contrast effects while maximizing the conversion
rate of users. We showed that our method was effective in a simu-
lated online storefront, and that the “mixed” version of our method
was a strict improvement over standard UCB. We contribute to
the literature on building systems that meet the needs of the users
without taking advantage of human weaknesses.
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