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Figure 7.2: The weight of each knowledge point in the ILWR critic for the state (.82, .52, –.25, 
.78, .38, 1.5), which resides near the center of the query space. The knowledge points have been 
sorted along the horizontal axis from largest weight to smallest. 

 

7.3 Control Test (CT) 

 The continuous actor-critic, when using the ANN-actor (Section 5.1) and ILWR-critic 

(Section 7.1) with the parameters from Section 7.2, achieves rapid initial learning on the CT, as 

well as improved long-term stability over the Fast parameters of Chapter 5. As mentioned in 

Section 6.5, long-term stability for practical applications requires observing performance out to 

10,000 episodes. Stability after this point is interesting only as a case study of the continuous 

actor-critic. Figure 7.3 depicts performance on the CT. Notice that the system maintains 

improved performance out to 10,000 episodes, after which the system continues to improve on 

average, though some trials became unstable. 
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Figure 7.3: Mean performance (N=16) of the actor-critic with the ILWR-critic on the CT. 
Standard deviation error bars are provided. The dotted lines represent the minimum and 
maximum values over all 16 trials. Notice the logarithmic scale of the horizontal axis.  

 

7.4 Baseline Biceps Test (BBT) 

 The actor-critic, when using the ANN-actor and ILWR-critic, excels on the BBT, 

achieving both rapid initial learning and significantly improved stability relative to the Fast 

parameters of Chapter 5. Performance is depicted in Figure 7.4. Although the system is not 

entirely stable out to 50,000 episodes, it is a vast improvement over the Fast parameters (Figure 

5.5). Further observation of the 16 trials to create Figure 7.4 revealed that the runs were split into 

two classes: in one, the system remained completely stable with an evaluation around .2;−  in the 

other, the system diverged to a final evaluation no worse than .35.−  The majority of runs 

( 11)N ≈  fell into the former category, with the remainder in the latter.  
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Figure 7.4: Mean performance (black solid line; N=16) of the actor-critic with the ILWR-critic 
on the BBT. In order to emphasize that most trials remained stable, all 16 trials are displayed as 
transparent red lines. Notice the dark red resulting from the majority of the trials maintaining an 
evaluation around –.2 after 50,000 training episodes. Standard deviation error bars are not 
provided. Notice the logarithmic scale of the horizontal axis.  

 

7.5 Fatigued Triceps Test (FTT) 

The actor-critic, when using the ANN-actor and ILWR-critic, excels on the FTT as well, 

achieving both rapid initial learning and significantly improved stability relative to that of the 

Fast parameters of Chapter 5. Performance is depicted in Figure 7.5. All 16 trials to create Figure 

7.5 terminated with evaluations above .22.−  



151 
 

 Figure 7.5: Mean performance (N=16) of the actor-critic with the ILWR-critic on the FTT. 
Standard deviation error bars are provided. The dotted lines represent the minimum and 
maximum values over all 16 trials. Notice the logarithmic scale of the horizontal axis.  

 

7.6 Noise Robustness Test (NRT) 

Performance of the actor-critic, when using the ANN-actor and ILWR-critic, is mediocre 

on the NRT with bias ( .05).Bμ =  Though rapid initial learning is preserved, the maximum 

evaluations achieved are significantly diminished compared to the BBT without the NRT. It is 

possible that the noise added to sensor readings makes it impossible to perform better, though 

this is not known. The learning curve, provided in Figure 7.6, is similar to that of the BBT, with 

rapid initial learning and a significant improvement in long-term stability over the ANN-only 

actor-critic of Chapter 5. This system is also more stable than the Hybrid Controller on the NRT 

(cf. Figure 6.10). All 16 trials to create Figure 7.6 terminated with evaluations above .33.−  
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Figure 7.6: Mean performance (N=16) of the actor-critic with the ILWR-critic on the NRT. 
Standard deviation error bars are provided. The dotted lines represent the minimum and 
maximum values over all 16 trials. Notice the logarithmic scale of the horizontal axis. 

 

7.7 Conclusion 

Replacing the ANN-critic in Chapter 5 with an ILWR-critic drastically improved 

performance. The resulting system achieved rapid initial learning on the CT, BBT, FTT, and 

NRT, as well as improved long-term stability, without the need for toggling parameter sets as in 

the Hybrid Controller (Section 6.5). We suspect the improvement in performance is primarily 

due to the locality of ILWR updates. However, the system still remains unstable in the extremely 

long-term, beyond the timeframe considered for practical applications to FES control. This 

instability may be inherent to the continuous actor-critic itself, as discussed in Subsection 2.2.10. 
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In this chapter, the input learning rate of ILWR (see Chapter 3) was zero due to time 

constraints. As higher dimension control tasks are tackled, the ability to switch from SI-ILWR to 

DI-ILWR may be an effective means of combating the curse of dimensionality. Future research 

should be done to test DI-ILWR as the critic in control tasks of higher dimension. Work should 

also be done to determine the influence of using ILWR for the actor as well as the critic. Finally, 

work should be done to compare the results of using ILWR to those of kernel based methods 

such as RBFs. RBFs were not included in this work because preliminary tests failed to achieve 

acceptable performance as the critic during pre-training. This is likely due to an insufficient 

granularity of the search for optimal parameters.  
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CHAPTER 8:  

CONCLUSION 

 

 This chapter is divided into two parts. Section 8.1 reviews the results and contributions of 

the previous chapters. Section 8.2 discusses possible future work. 

 

8.1 Results and Contribution 

This thesis, as a whole, serves as documentation of the application of the continuous 

actor-critic to the real-world problem of FES control of a human arm, discussing difficulties and 

the methods used to overcome them. The primary difficulties in FES control are that the 

dynamics of each subject's arm differ and the dynamics can change during trials due to muscle 

fatigue. The adaptive abilities of the controllers created herein were tested by requiring the 

controllers to adapt to changes in the arm model, which were inspired by variations in arm 

dynamics that were observed in actual human subjects. 

We introduced the Adaptive RL FES Controller Task in Section 1.2, which requires a 

controller for DAS1, the arm simulator, be created that achieves rapid initial learning and long-

term stability, while remaining robust to noise in sensor readings. In Section 2.1, we showed that 

two basic closed-loop controllers, PDs and PIDs, are insufficient for this task. We then proposed 

using RL methods to create an adaptive controller. 
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 After reviewing RL in the beginning of Section 2.2, we analyzed the continuous actor-

critic in Subsection 2.2.10, and showed its relation to the SRV algorithm (Subsection 2.2.9). We 

also discussed the lack of convergence guarantees, and provided intuition about how local the 

updates to the actor and critic should be. After reviewing function approximators in Section 2.3, 

we reproduced Doya's implementation (Doya, 2000) of the continuous actor-critic on the 

pendulum swing-up task in Section 2.4. We observed that the system learns even when the critic 

is not yet accurate. 

 In Chapter 3, we introduced ILWR and compared it to ANNs on several test problems, 

ranging from a simple function with one input and output (Sigmoid Environment, Subsection 

3.1.1) to the non-linear FitzHugh-Nagumo environment (Subsections 3.1.3 and 3.1.4). We also 

compared ILWR and ANN's abilities to track a non-stationary function, which emulates the task 

of representing the critic in the continuous actor-critic. In all of the tests in Chapter 3, ILWR 

outperformed ANNs. 

 In Chapter 4, we introduced a slew of different tests to evaluate a controller's ability to 

adapt to clinically relevant changes in arm dynamics. These tests were dubbed the Control Test 

(CT, Section 4.2), Baseline Biceps Test (BBT, Section 4.3), Fatigued Triceps Test (FTT, Section 

4.4), Noise Robustness Test (NRT, Section 4.5), Fatigued Biceps Test (FBT, Section 4.6), 

Toggling Test (TT, Section 4.7), Delayed Reward Test (DRT, Section 4.8), Discrete Reward 

Test (DiRT, Section 4.9), and Continuous Learning Modification (CLM, Section 4.10). The CT 

serves as a control, with the DAS1 arm model remaining unchanged. The BBT and FTT 

introduce changes to the arm dynamics, which mimic those expected in some FES subjects. The 

NRT tests the controller's ability to learn in the presence of sensor noise. The FBT is used in the 

TT as a specific test for the Hybrid Controller of Section 6.5. The DRT, DiRT, and CLM provide 
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additional insight into the controller's performance if humans were to provide the reward signal 

during actual trials. 

In Chapter 5 we found that the continuous actor-critic, when using ANNs for both the 

actor and the critic on the tests from Chapter 4, could achieve either rapid initial learning or long-

term stability, but not both. This was observed on the CT (Section 5.3), BBT (Section 5.4), and 

FTT (Section 5.5). Rapid initial learning was also observed to be robust to various amounts of 

exploration (Section 5.6), sensor noise (NRT, Section 5.7), a discretization of the reward signal 

(DRT, Section 5.8), and a delay in the reward signal (DiRT, Section 5.9). 

 We then attempted to improve long-term stability in the system devised in Chapter 5 by 

tweaking the cap on the TD-error (Section 6.1), by altering the muscle activation weight in the 

reward signal (Section 6.2), by only allowing updates to the actor when the critic is accurate 

(Section 6.3), and by adding a weight decay term to the ANN updates (Section 6.4). None of 

these improved long-term stability while preserving rapid initial learning, though the weight 

decay term did result in policies that generalized better to variations in arm dynamics, which was 

observed as improved initial performance on the BBT and FTT. Chapter 6 concludes by 

combining unstable rapid initial learning and slow but stable learning to create the Hybrid 

Controller of Section 6.5. 

 In Chapter 7, we attempt to achieve rapid initial learning and long-term stability without 

the need to toggle between various parameter settings as in the Hybrid Controller. After finding 

the proper parameters for training, ILWR is used to pre-train a critic. This critic is then used to 

replace the ANN-critic of Chapter 5. The remainder of Chapter 7 presents results on the CT 

(Section 7.3), BBT (Section 7.4), FTT (Section 7.5), and NRT (Section 7.6). In all cases, rapid 
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initial learning is preserved, while long-term stability is improved relative to the ANN critic of 

Chapter 5. 

 Though both the continuous actor-critic with an ANN actor and ILWR critic and the less 

elegant Hybrid Controller have achieved all the requirements of the Adaptive RL FES Controller 

Task, neither is completely stable. The instability, which presents beyond 10,000 arm 

movements, remains unexplained. It may be due to the gradient descent steps of the actor-critic 

being too large, or it may arise from the use of function approximators. 

 We have successfully completed the Adaptive RL FES Controller Task (Section 1.2) in 

two ways. The Hybrid Controller uses ANNs for both the actor and critic, though it requires 

changes to the parameters of the actor-critic, which may be either automated or manual. The 

second solution uses ILWR for the critic and an ANN for the actor. It achieves both rapid initial 

learning as well as long-term stability without the need for dynamic parameters. 

 Other than contributing to the FES literature by presenting an argument for the feasibility 

of RL for use in FES control, as discussed in Section 1.3, this thesis also contributes novel 

methods and theory to the RL literature. In Chapter 3, we introduced a novel function 

approximator, Incremental Locally Weighted Regression (ILWR), which outperforms ANNs in 

all tests executed in Chapters 3 and 7. In Section 6.4 we introduced a weight decay term to the 

continuous actor-critic, which resulted in policies that performed better when faced with minor 

variations to the environment. In Section 2.4, Chapter 5, and Chapter 6, we observed two 

different types of learning by the actor-critic: unstable rapid initial learning, and slow but stable 

learning. 
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8.2 Future Work 

Because this work is among the first of its kind, applying RL to FES control, there is still 

significant room for further research. For example, research should be done to compare the 

performance of policy gradient methods to that of the continuous actor-critic, with a focus on 

stability and ability to scale to problems of higher dimension. 

In Section 5.11, the continuous actor-critic with the pre-trained ANN actor and critic 

from Section 5.1, using the Fast parameters, learned on the BBT when the TD-error was replaced 

with a random negative signal. This remains unexplained. Further research should be performed 

to determine the reason for this learning, and whether it is common when using RL to adapt to a 

changing environment. 

In Section 6.4, we introduced a weight decay term to the update equations for the 

continuous actor-critic (Subsection 2.2.8). For the task of FES control using the DAS1 model, 

this resulted in the actor-critic learning policies that performed better when the environment 

changed. In machine learning (e.g., classification), weight decay terms are known to improve the 

generalizability of results. Similarly, in RL, the weight decay term has increased the 

generalizability of a policy to similar environments. Further research should be done to 

determine whether this is a fluke of our particular system, or a trend throughout RL. 

 We observed, in Section 2.4, Chapter 5, and Chapter 6, that the actor-critic had two 

different types of learning. In the first type, the critic is accurate, and learning is slow but stable 

in the long-term, and Gullapalli's intuition (Subsection 2.2.10) applies. In the second, the critic is 

not yet accurate, so Gullapalli's intuition does not apply, and yet rapid initial learning occurs. 
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Future work should be done to develop an intuition for why the actor-critic learns under these 

conditions. 

 In Subsection 2.2.10, we suggested increasing the locality of updates to the critic as 

learning progresses in the continuous actor-critic architecture. Though our analysis suggested 

that this may improve performance, its application fell outside the scope of this work because the 

Adaptive RL FES Controller Task requires that learning parameters not be decayed. 

 In Chapter 3, we presented Incremental Locally Weighted Regression (ILWR), and 

compared it to other function approximators. In all of our tests, it outperformed Artificial Neural 

Networks (ANNs), especially when tracking a non-stationary function. In Chapter 7, we used it 

as the critic in the continuous actor-critic on a real-world problem, resulting in a significant 

improvement in stability over ANNs. Implementing ILWR for the actor as well as the critic 

could also lead to an additional improvement. Further research should be done into the 

performance of ILWR, with additional comparisons to ANNs and RBFs. An analysis should be 

performed of the differences between ILWR and RBFs with moving kernel centers. Most 

importantly, ILWR should be considered by researchers for use as an incremental function 

approximator. Additionally, an approximation or randomized algorithm for DI-ILWR updates 

(Chapter 3 and Appendix C) could improve runtimes for ILWR. 

 Throughout this thesis, the continuous actor-critic was found to be sensitive to its 

parameter settings, primarily the learning rates, the eligibility decay rate, exploration magnitude 

and time scale, reward decay rate, and the function approximators selected to represent the actor 

and the critic. A comparison of the sensitivity of different RL methods with respect to their 
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parameter settings would have been useful, providing additional information for consideration 

when initially selecting a learning algorithm. 

 The policies learned by the continuous actor-critic in Chapters 5 through 7 have unnatural 

muscle stimulations, as depicted in Figure 8.1. Because muscles and inertia act as a low-pass 

filter, movement is not sensitive to high frequencies in muscle stimulation. This, combined with 

the negative reward for muscle forces, ought to result in smooth muscle activations such as the 

PD's. Future work should be done including constraints on the derivatives of muscle stimulations 

requested by the controller. This may help to remove the high-frequency fluctuations that are not 

present in natural movements nor the PD controller's policy. 

 

 

Figure 8.1: Requested biceps stimulation over an episode on the BBT before training and after 
500 training episodes with the Fast parameters (Table 5.2).  
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 Lastly, future research should be done into the application of RL controllers to FES, both 

in simulation and on human subjects. As this is one of the first attempts to apply RL techniques 

to FES, the research area is still open for significant development. The encouraging results from 

this thesis have inspired further work in the application of RL to FES control. At the Lerner 

Research Institute (LRI) of the Cleveland Clinic Foundation, researchers Kathleen Jagodnik and 

Dr. Antonie van den Bogert are preparing for human trials of this controller for planar arm 

movement, in which able-bodied subjects provide the reward signal. They will investigate how 

the learned policies will differ when the reward signal is provided by a human rather than 

generated automatically via Equation 4.1. If these tests are successful, the controller may be used 

for human trials using FES on a patient with spinal cord injury. 

 Researchers at the LRI have also created a detailed three-dimensional musculoskeletal 

model of a human arm (Chadwick et al., 2009). Pending successful results from the real-world 

application of RL for planar control, the RL controllers from Section 6.5 and Chapter 7 could be 

applied to the three-dimensional model, and eventually three-dimensional human trials. The 

primary difficulty in the switch will be the increase in the dimension of the action space, as the 

three-dimensional model includes over 100 muscles, though this can be overcome by clustering 

similar muscles into groups that are all given equal stimulation. Additionally, the ability of 

ILWR to cluster knowledge points around interesting areas of the domain, combined with its 

planar local model, may help combat the increases in state and action space dimensions. 

 This thesis has shown that RL is a viable approach for adaptive control tasks, specifically 

FES control of a human arm, and will hopefully open up a vein of further research in the area, 

with the long-term goal of restoring natural motor function to people with spinal cord injury. 
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APPENDIX A 
 

This appendix contains a derivation of Equation 3.5, which states 
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Recall from (Schaal, Atkeson, and Vijayakumar, 2002) that  
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Therefore, 
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by the definition of matrix multiplication. The summation is from one to p because 
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X WX X W  has p columns and y  has p rows. When ,j k≠  the right hand side is not a 

function of yi,j, so 

 1,

,

0id k

i jy
+∂

=
∂

β
 when ,j k≠  (A3) 

and when ,j k=  

 ( ) 11,
,

1,1, ,

i

i

p
d j T T

j
di j i jy y α

αα

−+

+=

∂ ∂ ⎛ ⎞⎡ ⎤= ⎜ ⎟⎢ ⎥⎣ ⎦∂ ∂ ⎝ ⎠
∑

β
X WX X W y  (A4) 



163 
 

 ( ) 1 ,

1,1 ,i

p
jT T

d i jy
α

αα

−

+=

=
⎛ ⎞∂⎡ ⎤⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦ ∂⎝ ⎠

∑
y

X WX X W  (A5) 

 ( ) 1

1,
.

i

T T

d i

−

+

⎡ ⎤= ⎢ ⎥⎣ ⎦
X WX X W  (A6) 

Together, Equations A3 and A6 imply Equation 3.5. 
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APPENDIX B 
 

This appendix contains derivations of Equations 3.6 and 3.7, which state 
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and 
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Recall from (Schaal, Atkeson, and Vijayakumar, 2002) that 

 ( ) 1
.T T−

=β X WX X Wy  (B1) 

Also recall the following rules from matrix calculus (Edwards and Penney, 2002): 

 Inverse Rule: ( )1 1 1− − −∂ = ∂A A A A  (B2) 

 Transpose Rule:  ( ) ( )TT∂ = ∂A A  (B3) 

 Summation Rule:  ( )∂ + = ∂ + ∂A B A B  (B4) 

 Product Rule: ( ) ( ) ( )∂ = ∂ + ∂AB A B A B  (B5) 

Also recall that matrix multiplication is associative, but not commutative. This appendix uses the 

following notations: xi,j is the jth input of xi, the ith knowledge point; there are p knowledge 
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points; the inputs are of dimension di; and the outputs are of dimension do. Any other notation 

not specified is consistent with that of Chapter 3. 

First, we expand 1,id k+β  to obtain 
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By solving for  
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we can easily extract the element at 1,id k+  for each k. When performing gradient descent on 

the error term, the results for 1 ok d≤ ≤  will be computed. We can expand Equation B7 using the 

product and inverse rules to obtain 
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For simplicity, we will let ( ) 1
.T −

=θ X WX  This value was computed during the approximation 

stage in the LWR algorithm, and can be stored so it need not be recomputed during the weight 

update stage. Substituting and applying the transpose rule, Equation B10 may be written as 
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Applying the product rule twice results in 
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Applying the transpose rule, product rule, and removing the term 

 
,

0,
i jx

∂
=

∂
y  (B13) 

we obtain the simplification, 
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Notice that ,/ i jx∂ ∂X  is a matrix with all zeros except , 1.i j =X  If using an unweighted 

version of LWR where W is not a function of xi,j, then ,/ .i jx∂ ∂ =W 0  If using LWR with 

weights, as is normal, ,/ ,i jx∂ ∂ =W 0  except for  
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Converting out of vector notation, this becomes 
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Moving the derivative into the exponent, we obtain 

 
( ) ( )2

, , ,
1

2
1 , , ,
2 1

,

1
2

.

i

di

i q

d

i qx x

i j

x x
e

x
α α α α

α

α α α α
α=

⎡ ⎤− −⎢ ⎥⎣ ⎦ =

⎛ ⎞⎡ ⎤∂ − −⎜ ⎟⎢ ⎥∑ ⎣ ⎦⎝ ⎠=
∂

∑D
D

 (B17) 

Substituting in 
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we obtain 
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⎛ ⎞⎡ ⎤∂ − −⎜ ⎟⎢ ⎥⎣ ⎦⎡ ⎤∂ ⎝ ⎠=⎢ ⎥
∂ ∂⎢ ⎥⎣ ⎦

∑ D
W W  (B20) 

Applying calculus, we obtain 

 
( )2

, , ,
, 1

,2

id

i q
i i

i j

x x

x

α α α α
α=

⎡ ⎤∂ −⎢ ⎥⎣ ⎦
= −

∂

∑ DW
 (B21) 

 
( )2

, , ,,

,2
i j q j j ji i

i j

x x
x

∂ −
= −

∂

DW
 (B22) 
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( )2 2

, , , ,, ,

,

2
2

i j q j i j q ji i j j

i j

x x x x
x

∂ − +
= −

∂

W D
 (B23) 

 ( ), ,
, ,2 2

2
i i j j

i j q jx x= − −
W D

 (B24) 

 ( ), , , , ,i i j j q j i jx x= −W D  (B25) 

which is Equation 3.7. Note that this assumes D is independent of , .i jx  
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APPENDIX C 
 

This appendix contains directions for efficiently computing , ,ˆ / .q k i jy x∂ ∂  Recall Equation 

3.6, which may be rewritten as follows: 

( ) ( ) ( )1 1 1

, , , , , ,

.
T T

T T T T T T

i j i j i j i j i j i jx x x x x x
− − −

⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪⎢ ⎥ ⎢ ⎥= + − + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎩ ⎭

β W X X W XX WX X y Wy X WX X W X WX X WX X Wy

 (C1) 

First, recall that ( ) 1T −
=θ X WX  was already computed during the approximation step in the 

incremental LWR algorithms. Substituting in ,θ  we obtain 

, , , , , ,

.
T T

T T T

i j i j i j i j i j i jx x x x x x

⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪⎢ ⎥ ⎢ ⎥= + − + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎩ ⎭

β W X X W Xθ X y Wy θ X W X WX θX Wy  (C2) 

Also notice that the entire matrix need only be computed once for each i,j, not for each distinct k. 

,/ i jx∂ ∂W  and ,/ i jx∂ ∂X  can be computed efficiently, as both have at most one non-zero entry.  

 Next, we write ,/ i jx∂ ∂β  in terms of r1 and r2, which are defined as 

 1
, ,

T

T

i j i jx x

⎡ ⎤⎛ ⎞∂ ∂⎢ ⎥= + ⎜ ⎟⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

W Xr θ X y Wy  (C3) 

and 

 2
, , ,

.
T

T T

i j i j i jx x x

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎢ ⎥= + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

X W Xr θ X W X WX θX Wy  (C4) 
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After computing r1 and r2, ,/ i jx∂ ∂β  can be computed as 

 1 2
,

.
i jx

∂
= −

∂
β r r  (C5) 

 Let ,i j  denote a real-valued number in the ith row and jth column, while 1i,j denotes a 1 

in the ith row and jth column. We begin by analyzing the computation of r1 by following the 

matrix operations to compute it, simplifying using the known forms of ,/ i jx∂ ∂W  (See Equation 

3.6), ,/ ,i jx∂ ∂X  and W: 

 

( )

,
,

0 0

,

0 0

i i
i jx

p p

⎡ ⎤
⎢ ⎥
⎢ ⎥∂ ⎢ ⎥=

∂ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

×

W  (C6) 

 

 
,

,

0 0

,
1

0 0
1

i j
i j

i

x

p d⎛ ⎞⎜ ⎟
⎝ ⎠

⎡ ⎤
⎢ ⎥
⎢ ⎥∂ ⎢ ⎥=

∂ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

× +

X  (C7) 

 

( )

1,1

2,2

1, 1

,

0 0
0

.
0

0 0
p p

p p
p p

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

×

W
W

W
W

W

 (C8) 
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 The first step in computing r1 is computing 
,

:T

i jx
∂
∂

WX  

 

( ) ( ) ( )

, ,

1,1,1 1,

2,

,

,

1,1 1, 1,

0 0

,

0 0

1 1

i

i i i

T T

i j i j

ip

i

i i

d i

d d p d i

i i

x x

d p p p d p
+ + +

∂ ∂
∂ ∂

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ =
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

+ × × + ×

W WX X

0 0  (C9) 

where 0  represents a submatrix with all entries equal to zero. The result can be expressed as  

 1

,

, ,..., ,..., , ,T

i jx
∂ ⎡ ⎤= ⎣ ⎦∂
WX 0 0 v 0 0  (C10) 

where 11, .id +∈0 v  v1 can be written as 

 1
,

, ,

for 1 1.T
i i

i j i i

d
xα α α

⎛ ⎞∂
= ≤ ≤ +⎜ ⎟⎜ ⎟∂⎝ ⎠

Wv X  (C11) 

The next step in computing r1 is computing 
,

:T

i jx
∂
∂

WX y  
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 ( ) ( ) ( )

, ,

1,1 1, 1,1 1,

1

,1 ,2 , 1 ,

,1 ,,1 ,

.

1 1

o o

o o

oo

T T

i j i j

d d

i i i d i d

p p dp p d

i o i o

x x

d p p d d d

−

∂ ∂
∂ ∂

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎡ ⎤ =⎣ ⎦ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
+ × × + ×

W WX y X y

0 v 0  (C12) 

Note that the elements in ( ),
T

i jx∂ ∂X W y  are a function of only v1 and the ith row of y. As such, 

we can write an equation for each element in ( ), ,T
i jx∂ ∂X W y  

 1
, , ,

, ,, ,

.T T
t i u t i i u

i j i jt u i i
x x

⎡ ⎤ ⎛ ⎞∂ ∂
= = ⎜ ⎟⎢ ⎥ ⎜ ⎟∂ ∂⎢ ⎥⎣ ⎦ ⎝ ⎠

W WX y v y X y  (C13) 

 Next we must solve for the second half of r1, ( ), .
T

i jx∂ ∂X Wy  The first step of this is to 

compute ( ), :
T

i jx∂ ∂X W  

 ( ) ( ) ( )

, ,

1,1

2,2

,

1, 1 ,

,

0 00 0 0 0
0

.1
0

0 00 0 0 0

1 1

T
T

i j i j

j i

p p j i

p p

i i

x x

d p p p d p

− −

⎛ ⎞∂ ∂
⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥=
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

+ × × + ×

X XW W

W
W

W
W

 (C14) 

The real number in the jth row and ith column of 
,

T

i jx
∂
∂
X W  can be expressed as 
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 ,
, ,

.
T

i i
i j j i

x
⎡ ⎤∂

=⎢ ⎥
∂⎢ ⎥⎣ ⎦

X W W  (C15) 

 The next step is to compute ( ), :
T

i jx∂ ∂X Wy  

( ) ( ) ( )

, ,

1,1 1,

,1 ,2 , 1 ,,

,1 ,

0 00 0

.

0 0 0 0

1 1

o

o o

o

T T

i j i j

d

j j j d j dj i

p p d

i o i o

x x

d p p d d d

−

⎛ ⎞ ⎛ ⎞∂ ∂
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ =
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

+ × × + ×

X XW y Wy

 (C16) 

The jth row of ( ),

T

i jx∂ ∂X Wy  can be written as a row vector, v2, each element of which can be 

expressed as 

 2
, , for 1 1.i i i odα α α= ≤ ≤ +v W y  (C17) 

Combining this with Equation C13, we can compute r1, by first building 1̂r  as a ( )1i od d+ ×  

matrix with 

 

[ ]
, ,

, ,
1 ,

, , , ,
, ,

, ,

ˆ

, ,

T
t i i u

i j i i

t u
T
t i i u i i i u

i j i i

t j
x

W y t j
x

⎧ ⎛ ⎞∂
≠⎪ ⎜ ⎟⎜ ⎟∂⎪ ⎝ ⎠⎪= ⎨

⎛ ⎞∂⎪
+ =⎜ ⎟⎪ ⎜ ⎟∂⎝ ⎠⎪⎩

WX y

r
WX y

 (C18) 

and then multiplying 1̂r  by θ  ( 1 1)i id d+ × +  on the left-hand side, giving the 1i od d+ ×  result: 
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 1 1̂.=r θr  (C19) 

The time to compute r1 is ( )2 .i o o iO d d d d+  The 2
i od d  term comes from the cost of the final 

multiplication by .θ  

 Next, we compute r2, defined in Equation C4, using the same method. We first simplify 

the end by computing the 1i od d+ ×  matrix .T=φ X Wy  This term is independent of i, j, and k 

and need not be computed more than once for each query. Substituting in ,φ  we obtain 

 
2

, , ,

.
T

T

i j i j i jx x x

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎢ ⎥= + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

X W Xr θ X W X WX θφ  (C19)

 

Next we compute the ( ),i jx∂ ∂W X  term: 

 

( ) ( ) ( )

, ,

1,1

2,2

1, 1 , ,

,

0 0 0 0 0 0
0

.
0 1

0 0 0 0 0 0

1 1

i j i j

p p i j i j

p p

i i

x x

p p p d p d

− −

∂ ∂
∂ ∂

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

× × + × +

X XW W

W
W

W
W

 (C20) 

The ,i j  term is Wi,i. Next we compute the ( ),i jx∂ ∂W X  term: 
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( ) ( ) ( )

, ,

1,1 1, 1, 1

,

,1 ,2 , , 1

,1 , , 1

1 0 00 0

.

0 0 1 0 0

1 1

i i

i i

i i

i j i j

d d

i i

i i i d i d

p p d p d

i i

x x

x x

x x

p p p d p d

+

+

+

∂ ∂
∂ ∂

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ =
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

× × + × +

W WX X

 (C21) 

The ith row of ( ),i jx∂ ∂W X  can be expressed as a row vector, 13 ,id +∈v  which can be 

described as 

 3
,

, ,

.i
i j i i

x
xα α

⎛ ⎞∂
= ⎜ ⎟⎜ ⎟∂⎝ ⎠

Wv  (C22) 

 Using Equations C20 and C22, ( ) ( ), ,i j i jx x∂ ∂ + ∂ ∂W X W X  can now be computed as 

 

( )

,1 ,2 , , 1, ,

0 0

,

0 0
1

i ii i i d i di j i j

i

x x

p d

+

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥∂ ∂

+ = ⎢ ⎥
∂ ∂ ⎢ ⎥

⎢ ⎥⎣ ⎦
× +

X WW X  (C23) 

where the ith row can be expressed as row vector v3 (Equation C22) plus Wi,i in the ith row and jth 

column. We will call this row vector v4, defined as 
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,
, ,4

, ,
, ,

, when ,

, otherwise.

i
i j i i

i i i
i j i i

x j
x

x
x

α

α

α

α
⎧⎛ ⎞∂

≠⎪⎜ ⎟⎜ ⎟∂⎪⎝ ⎠⎪= ⎨
⎛ ⎞∂⎪

+⎜ ⎟⎪⎜ ⎟∂⎝ ⎠⎪⎩

W

v
W W

 (C24) 

We can now compute ( ) ( ), , :T
i j i jx x⎡ ⎤∂ ∂ + ∂ ∂⎣ ⎦X W X W X  

 

( ) ( ) ( )

, , , ,

1,1 1, 11,1 1,

4

1,1 1, 1,1 1, 1

.

1 1 1 1

i

i i i i i

T T

i j i j i j i j

dp

i

d d p d d d

i i i i

x x x x

d p p d d d

+

+ + + + +

⎛ ⎞∂ ∂ ∂ ∂
+ +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ =
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

+ × × + + × +

X W X WX W X X W X

0

v

0

 (C25) 

Each element in ( ) ( ), ,
T

i j i jx x⎡ ⎤∂ ∂ + ∂ ∂⎣ ⎦X W X W X  can be expressed as
 

 
4

.,
, , ,

T T
t i u

i j i j t u
x x

⎡ ⎤⎛ ⎞∂ ∂
+ =⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

X WX W X X v  (C26)
 

 Next, we must compute ( ), ,
T

i jx∂ ∂X W  as described in Equation C14, reproduced below 

for convenience: 
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( ) ( ) ( )

, ,

1,1

2,2

,

1, 1 ,

,

0 00 0 0 0
0

,1
0

0 00 0 0 0

1 1

T
T

i j i j

j i

p p j i

p p

i i

x x

d p p p d p

− −

⎛ ⎞∂ ∂
⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥=
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

+ × × + ×

X XW W

W
W

W
W

 (C14) 

where , , .j i i i= W  Next, we must multiply by X: 

( ) ( ) ( )

, ,

1,1 1, 1, 1

,1 ,2 , , 1,

,1 , , 1

1 0 00 0

.

0 0 1 0 0

1 1 1 1

i i

i i

i i

T T

i j i j

d d

j j j d j dj i

p p d p d

i i i i

x x

x x

x x

d p p d d d

+

+

+

⎛ ⎞ ⎛ ⎞∂ ∂
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ =
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

+ × × + + × +

X XW X WX

 (C27) 

The jth row of the result can be expressed as a row vector, 15 ,id +∈v  which can be computed as 

 5
, , .i i ixα α=v W  (C28) 

 We can now compute M, defined as 

 
, , ,

.
T

T

i j i j i jx x x
⎛ ⎞ ⎛ ⎞∂ ∂ ∂

= + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

X W XM X W X WX  (C29) 
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The left side of the summation is provided in Equation C26, and the right side is provided in 

Equations C27 and C28. The algorithm for computing M is defined in Algorithm C1. 

 

 

Algorithm C1: Algorithm for computing M. 

 

 We can now compute r2, as 

 2 .=r θMθφ  (C30) 

This step takes ( )3 2
i i o i o o i oO d d d d d d d pd+ + + +  time, most of which is accrued during the 

calculation of Equation C30. Using r1, provided in Equation C18 and r2, provided in Equation 

C30, we can compute the final result, 

 1 2
,

.
i jx

∂
= −

∂
β r r  (C31) 

Algorithm for Computing M = ( )1 1 :i id d+ × +  

1. For all ,t u∈  where 1 , 1it u d≤ ≤ +  

   If u j≠  
Then  

Set , , ,
, ,

T
t u t i i u

i j i i

X x
x

⎛ ⎞∂
= ⎜ ⎟⎜ ⎟∂⎝ ⎠

WM  

Else 

  Set , , , ,
, ,

T
t u t i i u i i

i j i i

X x
x

⎛ ⎞⎛ ⎞∂⎜ ⎟= +⎜ ⎟⎜ ⎟⎜ ⎟∂⎝ ⎠⎝ ⎠

WM W  

2. For 1α =  to 1id +  

Do , , , ,j j i i ixα α α= +M M W  
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Computing r1 took ( )2 ,i o o iO d d d d+  which is dwarfed by the ( )3 2 2
i i o i i oO d d d d p d pd+ + +  time 

to compute r2, making the time to compute the final result ( )3 2 2
i i o i i oO d d d d p d pd+ + +  which is 

polynomial with respect to the dimension of the inputs, outputs, and the number of knowledge 

points included in the regression. 

 Recall that only the bottom row of ,i jx∂ ∂β  is needed, so a slight performance increase 

can be achieved by only computing the bottom rows of r1 and r2. When computing r1, this means 

only computing the bottom row in the last step of multiplying by θ  on the left-hand side (step 3 

in Algorithm C2). When computing r2, (step 5 in Algorithm C2) this means that only the bottom 

rows of θM  and ( )( )θM θφ  must be computed. The complete algorithm for computing ,i jx∂ ∂β  

is provided as Algorithm C2. 
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Algorithm C2: Algorithm for computing 
,

,
i jx
∂

∂

β  which is required for DI-ILWR (Chapter 3). 

  

Algorithm C2 for computing :
,i jx

∂
∂
β   

Given: i, j, ,X  ,W  id  (input dimension), od  (output dimension) 

1. [ ] [ ] [ ]
, ,

, ,
1 ,

, , , ,
, ,

, ,

ˆ1, 1 , 1, ,

, .

T
t i i u

i j i i
i o t u

T
t i i u i i i u

i j i i

t j
x

t d u d

W y t j
x

⎧ ⎛ ⎞∂
≠⎪ ⎜ ⎟⎜ ⎟∂⎪ ⎝ ⎠⎪∀ ∈ + ∀ ∈ = ⎨

⎛ ⎞∂⎪
+ =⎜ ⎟⎪ ⎜ ⎟∂⎝ ⎠⎪⎩

WX y

r
WX y

 
2. ( ) 1T −

=θ X WX  

3. 1 1̂←r θr  
4. Execute Algorithm C1, to compute M 
5. Compute T=φ X Wy  
6. 2 =r θMθφ  

7. 1 2
,i jx

∂
= −

∂
β r r  



181 
 

APPENDIX D 
 

 This appendix contains the derivation of Equation 3.4, from Equations 3.2 and 3.3: 

 ( )w E wηΔ = − ∇  (3.2) 
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q i q i
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We start by writing Equation 3.2 as an update for each individual weight, 

 ( ).i iw E wηΔ = − ⋅∇  (D1) 

Next we compute the gradient of ( ) :iE w  
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Substituting Equation D6 into Equation 3.2, we obtain Equation 3.4. 
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APPENDIX E 
 

The parameters used by the DAS1 simulations are provided in the following setup files. 

First, arm.bio reads: 

# arm.bio 
# muscles 
# 
# six muscles for the planar arm model 
# Fmax and moment arms from Bhushan & Shadmehr, Biol Cybern 1999 
 
verbose_level 0 
 
joint SHOULDER 
 distal_body upperarm 
 limits -90 180 
 end 
 
joint ELBOW 
 distal_body forearm 
 limits 0 180 
 end 
 
muscle default 
 a 0.25 
 vmrel 10 
 umax 0.04 
 fecmax 1.5 
 krel 0.0 
 slopfac 2.0 
 PEEslack 1.0 
 time_constants 0.040 0.060 
 end 
 
# note: the following values of lceopt and lslack were 
#   taken from  
#     Garner, B.A., Pandy, M.G. "Estimation of Musculotendon  
#     Properties in the Human Upper Limb." Annals of  
#     Biomedical Engineering, February 2003, vol. 31,  
#     no. 2, pp. 207 - 220. 
#        Specifically, the values were taken from the  
#        "model" column of Table 3 (p. 216). 
       
 
muscle ANT_DELTOID 
 fmax 800 
 lceopt 0.1280 lslack 0.0538 width 1.0 
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 geometry pulley 0.1840 SHOULDER 0.05 end 
 end 
 
muscle POST_DELTOID 
 fmax 800 
 lceopt 0.1280 lslack 0.0538 width 1.0 
 geometry pulley 0.1840 SHOULDER -0.05 end 
 end 
 
muscle BRACHIALIS 
 fmax 700 
 lceopt 0.1028 lslack 0.0175 width 1.0 
 geometry pulley 0.1210 ELBOW 0.03 end 
 end 
 
muscle TRICEPS_SH 
 fmax 700 
 lceopt 0.0877 lslack 0.1905 width 1.0 
 geometry pulley 0.2858 ELBOW -0.03 end 
 end 
 
muscle TRICEPS_LH 
 fmax 1000 
 lceopt 0.0877 lslack 0.1905 width 1.0 
 geometry pulley 0.2858 SHOULDER -0.03 ELBOW -0.03 end 
 end 
 
muscle BICEPS 
 fmax 1000 
 lceopt 0.1422 lslack 0.2298 width 1.0 
 geometry pulley 0.3812 SHOULDER 0.03 ELBOW 0.03 end 
 end 
 
end 
 
 

Next, arm.torques.bio reads: 

# arm.bio 
# torques  // this line necessary for reinforcement learning 
program, and it must be the 2nd line! 
# 
# six muscles for the planar arm model 
# Fmax and moment arms from Bhushan & Shadmehr, Biol Cybern 1999 
 
verbose_level 0 
 
joint SHOULDER 
 distal_body upperarm 
 limits -90 180 
 end 
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joint ELBOW 
 distal_body forearm 
 limits 0 180 
 end 
 
muscle default 
 a 0.25 
 vmrel 10 
 umax 0.04 
 fecmax 1.5 
 krel 0.0 
 slopfac 2.0 
 PEEslack 1.0 
 time_constants 0.040 0.060 
 end 
 
# note: the following values of lceopt and lslack were 
#   taken from  
#     Garner, B.A., Pandy, M.G. "Estimation of Musculotendon  
#     Properties in the Human Upper Limb." Annals of  
#     Biomedical Engineering, February 2003, vol. 31,  
#     no. 2, pp. 207 - 220. 
#        Specifically, the values were taken from the  
#        "model" column of Table 3 (p. 216). 
      
 
end 
 

Finally, arm_info reads: 

SD/FAST Information File: arm.sd 
Generated 30-May-2004 12:33:04 by SD/FAST, Kane's formulation 
(sdfast B.2.8 #30123) on machine ID unknown 
 
ROADMAP (arm.sd) 
 
Bodies        Inb 
No  Name      body Joint type  Coords q 
--- --------- ---- ----------- ---------------- 
 -1 $ground                                     
  0 upperarm   -1  Pin           0              
  1 forearm     0  Pin           1              
 
 
STATE INDEX TO JOINT/AXIS MAP (arm.sd) 
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 Index 
  q|u   Joint  Axis   Joint type    Axis type    Joint Name 
 -----  -----  ----   -----------   ----------   ---------- 
  0|2       0     0   Pin           rotate        
  1|3       1     0   Pin           rotate        
 
 
SYSTEM PARAMETERS (arm.sd) 
 
Parameter  Value  Description 
 
nbod           2  no. bodies (also, no. of tree joints) 
njnt           2  total number of joints (tree+loop) 
ndof           2  no. degrees of freedom allowed by tree joints 
nloop          0  no. loop joints 
nldof          0  no. degrees of freedom allowed by loop joints 
 
nq             2  no. position coordinates in state (tree 
joints) 
nu             2  no. rate coordinates in state (tree joints) 
nlq            0  no. position coordinates describing loop 
joints 
nlu            0  no. rate coordinates describing loop joints 
 
nc             0  total no. constraints defined 
nlc            0  no. loop joint constraints 
npresc         0  no. prescribed motion constraints 
nuserc         0  no. user constraints 
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APPENDIX F 

Table F1 provides a complete listing of the parameter sets utilized by the continuous 

actor-critic throughout this thesis. Table F2 provides comments on each parameter set. 

 

 Fast Slow A B ILWR ILWR-
Pretrain 

General Pendulum 
Swing-Up 

Aη  70 10 0.001 99.5 70 0 70 5 

Cη  0 0.344 0.0001 34.4 0.1 0.1 0.344 1 

σ  9,000 9,000 74.5 7991 9,000 9,000 9,000 N/A 

Nτ  2,400 2,400 0.55 2,500 2,400 2,400 2,400 1 

τ  0.1 0.1 1 1 0.1 0.1 0.1 1 
κ  0.1 0.1 0.55 71.5 0.1 0.1 0.1 1 

Ak  0 0 0 0 0 0 0.0000002 0 

Ck  0 0 0 0 0 0 0.000002 0 

D  N/A N/A N/A N/A (.5, .5 , .3, .3, .5 , .5 )diag (.5 , .5 , .3, .3, .5 , .5 )diag N/A N/A 
 

Table F1: A complete listing of parameter sets for the continuous actor-critic implementations in 
this thesis. 

 

 

Fast Uses pre-trained ANN actor and ANN critic-10 
Slow Uses pre-trained ANN actor and ANN critic-10 
A Uses pre-trained ANN actor and ANN critic-20 
B Uses pre-trained ANN actor and ANN critic-20 
ILWR Uses pre-trained ANN actor and ILWR critic 
ILWR-
Pretrain 

Uses pre-trained ANN actor and random initial ILWR critic 

General Uses pre-trained ANN actor and ANN critic-10 
Pendulum 
Swing-Up 

Uses random initial ANNs for the actor and critic 
 

Table F2: Comments on the usage of each parameter set from Table F1. 
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