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Abstract
Natural gradient ascent (NGA) is a popular opti-
mization method that uses a positive definite met-
ric tensor. In many applications the metric ten-
sor is only guaranteed to be positive semidefinite
(e.g., when using the Fisher information matrix
as the metric tensor), in which case NGA is not
applicable. In our first contribution, we derive
generalized natural gradient ascent (GeNGA),
a generalization of NGA which allows for pos-
itive semidefinite non-smooth metric tensors. In
our second contribution we show that, in stan-
dard settings, GeNGA and NGA can both be di-
vergent. We then establish sufficient conditions
to ensure that both achieve various forms of con-
vergence. In our third contribution we show how
several reinforcement learning methods that use
NGA without positive definite metric tensors can
be adapted to properly use GeNGA.

1. Introduction
Natural gradient ascent (NGA) is a popular method for
finding local maxima of a smooth function. According to
Google Scholar, the paper introducing NGA (Amari, 1998)
has over 1,600 citations from a wide range of fields, which
hints at the popularity and impact of NGA. With its breadth
of applications, it is not surprising that the assumptions
made in the original derivation of NGA are not always
satisfied. One example of this is that NGA assumes that
the domain of the function being optimized is a Rieman-
nian manifold. In some applications the domain is a semi-
Riemannian manifold, but not necessarily a Riemannian
manifold. Our first contribution is generalized natural gra-
dient ascent (GeNGA), which relaxes the assumptions of
NGA to allow for domains that are (possibly non-smooth)
semi-Riemannian manifolds.
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Despite the popularity of NGA, its convergence properties
have not been well studied. In our second contribution, we
provide positive and negative convergence results for NGA
and GeNGA.

Finally, in our third contribution, we consider the applica-
tion of NGA to reinforcement learning. This is an example
of a field where the domain of the function to be optimized
is a semi-Riemannian manifold, but not necessarily a Rie-
mannian manifold. The derivations of the existing methods
therefore, by using NGA, make an implicit assumption that
is not satisfied. We remedy this by showing how reinforce-
ment learning algorithms can use GeNGA in place of NGA.

The body of the paper is organized as follows. In Section
2 we show that NGA can diverge when ordinary gradient
ascent converges. In Section 3 we derive GeNGA, and in
Section 4 we provide convergence guarantees for NGA and
GeNGA. In Section 5 we show how some reinforcement
learning algorithms can be updated to use GeNGA. Finally,
in Section 6 we present examples that illustrate the differ-
ent assumptions and convergence guarantees before con-
cluding in Section 7.

2. Divergence of Natural Gradient Ascent
Consider maximizing a function, f : Rn → R.

Assumption 1. f is continuously differentiable. •

The gradient of f at x, ∇f(x), is the direction of change
to x that causes f to increase most rapidly, assuming that
x resides in Euclidean space. The natural gradient general-
izes the gradient to allow x to lie on a Riemannian mani-
fold with metric tensor G(x) (Amari, 1998). On this man-
ifold, at x, the length of a vector, ∆x ∈ Rn, is given by
‖∆x‖G(x) :=

√
∆xᵀG(x)∆x.1

For G to describe a Riemannian manifold, it must vary
smoothly from point to point and must be positive definite

1We use Aᵀ to denote the transpose of a matrix, A, and A+

to denote the Moore-Penrose pseudoinverse of A. When vector
norms are applied to matrices, they denote the induced matrix
norm. We assume that vectors are column vectors.



GeNGA

for all x, in which case ‖·‖G(x) are norms. Often, G(x) is
taken to be the Fisher information matrix for a parameter-
ized distribution (Amari, 1998). NGA produces a sequence
of points (xi)

∞
i=1 by ascending the natural gradient from an

initial point, x1, using a step size schedule (αi)
∞
i=1 and the

update
xi+1 = xi + αiG(xi)

−1∇f(xi).

Despite claims that NGA converges to a local maximum
(Peters & Schaal, 2008), without non-standard restrictions,
it does not. Specifically, if Assumption 1 holds, and
Assumption 2 (Lipschitz Assumption). There exists a fi-
nite constant L such that ∀x, z ∈ Rn,

‖∇f(x)−∇f(x− z)‖2 ≤ L‖z‖2,
•

Assumption 3. All αi are positive,
∑∞
i=1 αi = ∞, and∑∞

i=1 α
2
i <∞, •

then ordinary gradient ascent causes either f(xi) → ∞
or limi→∞‖∇f(xi)‖2 = 0 (Bertsekas & Tsitsiklis, 2000).
However, the same is not true for NGA. In Theorem 1 we
give an example where NGA oscillates and diverges when
ordinary gradient ascent would converge to the global max-
imum.
Theorem 1. If Assumptions 1, 2, and 3 hold, then it can oc-
cur that the sequence, (xi)

∞
i=1, produced by NGA diverges

when ordinary gradient ascent would converge to a finite
value.

Proof. We provide a counterexample. Let f(x) := −x2,
where x ∈ R. Notice that f is continuously differentiable
and its derivative is Lipschitz. Consider the application of
NGA to f with αi = 1

2i and x1 = 2. Ordinary gradient
ascent causes xi → 0 in this setting (Bertsekas & Tsitsiklis,
2000), and x = 0 is a global maximum of f . For NGA, let

G(x) :=

{
−x2 + 2 if x ∈ (−1, 1)

x−2 otherwise.

This G meets all of the requirements to describe a Rieman-
nian manifold.

When xi 6∈ (−1, 1), the NGA update is

xi+1 =xi + αiG(xi)
−1∇f(xi) = xi −

x3
i

i
.

We show that this sequence diverges without entering the
(−1, 1) interval. We show this with an inductive proof that
|xi| ≥ 2i.

We have two inductive hypotheses:

|xi| ≥2i, (1)∣∣∣∣x3
i

i

∣∣∣∣ ≥3|xi|. (2)

These are both satisfied when i = 1 since x1 = 2.

For the inductive step for (1):

|xi+1| =
∣∣∣∣xi − x3

i

i

∣∣∣∣ ≥ |2xi|,
by (2). Then by (1): |xi+1| ≥ |4i| > 2(i+ 1).

For the inductive step for (2):

|xi+1|3

i+ 1
=

1

i+ 1

∣∣∣∣xi − x3
i

i

∣∣∣∣2 |xi+1|

≥ 1

i+ 1
|2xi|2|xi+1|,

by (2). By (1) we have

|xi+1|3

i+ 1
≥ 1

i+ 1
|4i|2|xi+1| ≥ 3|xi+1|.

In Section 6.5 we give an example to show that divergence
can still occur even if the metric tensor is the Fisher in-
formation matrix. In the following section we introduce
GeNGA, a generalization of NGA, before providing con-
vergence proofs that apply to both methods.

3. Generalized Natural Gradient Ascent
Although the Fisher information matrix is often chosen as a
metric tensor for NGA, it is only guaranteed to be positive
semidefinite. In these cases where G(x) is only positive
semidefinite,G describes a semi-Riemannian manifold and
‖·‖G(x) is a seminorm. Before deriving an expression for
the directions of steepest ascent in this setting, we require:

Assumption 4. There exists at least one solution, ∆x, to
the equality

G(x)∆x = ∇f(x),

for all x ∈ Rn. •

It can be shown that Assumption 4 implies that if there is
a direction of change, ∆x, to the current x that incurs no
distance, then the directional derivative of f at x in the di-
rection ∆x is zero (i.e., ∇∆xf(x) = 0 for all x and ∆x
where ‖∆x‖G(x) = 0). We also use a similar but stronger
assumption, which implies that ∇∆xf(z) = 0 for all x, z,
and ∆x where ‖∆x‖G(x) = 0:

Assumption 5. There exists at least one solution, ∆x, to
the equality G(x)∆x = ∇f(z), for all x, z ∈ Rn. •

In Theorem 2 we generalize the natural gradient to only
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require x to reside on a semi-Riemannian manifold.2 Here-
after, to alleviate formatting problems, we writeG forG(x)
and Gi for G(xi).3 Also, let

h(x, v) := G+∇f(x) +
(
I −G+G

)
v, (3)

where v ∈ Rn.

Theorem 2. If each x lies on a semi-Riemannian manifold
and Assumptions 1 and 4 hold, then for every v,

h(x, v)

‖h(x, v)‖G
(4)

is a direction of steepest ascent of f at x. Also, every di-
rection of steepest ascent is given by (4), for some v.

Proof. The directions of steepest ascent of f at x are the
∆x that, for infinitesimal ε, maximize f(x + ε∆x), sub-
ject to ‖∆x‖G = 1 (Amari, 1998). By Assumption 1,
the directions of steepest ascent are those that maximize
ε∇f(x)ᵀ∆x, subject to ∆xᵀG∆x − 1 = 0. Using the
method of Lagrange multipliers gives necessary conditions
for ∆x:

2λG∆x = ∇f(x), (5)

for some positive scalar λ. The system of linear equations
specified by (5) must have one solution (Assumption 4),
and it may have many solutions since G is only positive
semidefinite. Every solution is given by (4) for some v.

In the remainder of this proof we will show that
∇f(x)ᵀh(x, v)/‖h(x, v)‖G takes the same value for every v,
and thus that all h(x, v)/‖h(x, v)‖G are directions of steep-
est ascent. This means that, in this instance, the method
of Lagrange multipliers produces necessary and sufficient
conditions.

By Assumption 4 we have thatGG+∇f(x) = ∇f(x). Us-
ing the definition of h(x, v),

Gh(x, v) =GG+∇f(x) +
[
G−GG+G

]
v

=∇f(x).

2We do not place smoothness restrictions on G for GeNGA or
one of our convergence proofs, so this is actually more general
than semi-Riemannian manifolds. However, to avoid convolut-
ing the text, we still refer to x as residing on a semi-Riemannian
manifold.

3This shorthand does not apply to any variables other than x.
That is, G always denotes G(x) and never G(z). Sometimes we
still write out G(x) for emphasis.

So,

∇f(x)ᵀ
h(x, v)

‖h(x, v)‖G
=
∇f(x)ᵀh(x, v)√
∇f(x)ᵀh(x, v)

=
√
∇f(x)ᵀh(x, v)

=
(
∇f(x)ᵀG+∇f(x) +∇f(x)ᵀv

−∇f(x)ᵀG+Gv
) 1

2

.

Since

∇f(x)ᵀG+Gv =
(
GG+∇f(x)

)ᵀ
v = ∇f(x)ᵀv,

we have that

∇f(x)ᵀ
h(x, v)

‖h(x, v)‖G
=
√
∇f(x)ᵀG+∇f(x). (6)

Since the right side of (6) does not depend on v, all v cause
∇f(x)ᵀh(x, v)/‖h(x, v)‖G to take the same value.

Given some x1 ∈ Rn, generalized natural gradient ascent
(GeNGA) produces a sequence, (xi)

∞
i=1, by

xi+1 = xi + αi∇̃f(xi),

where (αi)
∞
i=1 is a sequence of non-negative step sizes, and

where the generalized natural gradient, ∇̃f(xi), points in
a direction of steepest ascent (but is not normalized):

∇̃f(x) := h(x, v), (7)

for some v. When G is positive definite for all x, this
degenerates to NGA. Also, notice that, from the semi-
Riemannian point of view (measuring distances using ‖·‖G
rather than ‖·‖2), the length of the generalized natural gra-
dients are all equal:

‖∇̃f(x)‖G = ‖G+∇f(x)‖G.

Lastly, selecting v = 0 gives the direction of steepest ascent
with minimum Euclidean norm: G+∇f(x). We use an
assumption to specify when we require GeNGA to use this
direction of steepest ascent:

Assumption 6. ∇̃f(x) = G+∇f(x) always. •

4. Convergence
In this section we establish sufficient conditions to ensure
that GeNGA achieves different types of convergence. We
provide examples that illustrate the benefits and drawbacks
of each convergence guarantee in Sections 6.1, 6.2, and 6.3.

One approach to showing that GeNGA converges is to
match the requirements of an existing guarantee:
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Assumption 7. There exist positive scalars c1 and c2 such
that

c1 ‖∇f(xi)‖22 ≤ ∇f(xi)
ᵀ∇̃f(xi), (8)

and ∥∥∥∇̃f(xi)
∥∥∥

2
≤ c2 ‖∇f(xi)‖2 , (9)

for all i. •
Theorem 3. If Assumptions 1, 2, 3, 4, and 7
hold, then GeNGA causes either f(xi) → ∞ or
limi→∞‖∇f(xi)‖2 = 0.

Proof. This follows immediately from the work of Bert-
sekas & Tsitsiklis (2000).

A drawback of this guarantee is that different choices of v
whenG is singular (i.e., selecting different generalized nat-
ural gradients when there are many) can cause the left side
of (9) to become arbitrarily large, which means that no c2
can exist. This means that Theorem 3 is not always appli-
cable to GeNGA. However, when using NGA or GeNGA
with Assumption 6, Theorem 3 can be useful.

In the remainder of this section we present a guarantee that
is more applicable to GeNGA. It uses less restrictive as-
sumptions but provides a correspondingly weaker guaran-
tee. In order to provide this guarantee, we introduce a mod-
ified Lipschitz assumption that uses the Riemannian semi-
norm in place of the Euclidean norm and a generalized nat-
ural gradient in place of the gradient:

Assumption 8 (Riemann-Lipschitz Assumption). There
exists a finite constant, LG, such that, ∀x, z ∈ Rn,

‖G+∇f(x)−G+∇f(x− z)‖G ≤ LG‖z‖G. •

Intuitively, this says that, from a semi-Riemannian point of
view, the gradient of f is Lipschitz. Notice that, for any x
and A,

‖A+x‖A =
√
xᵀA+AA+x =

√
xᵀA+x = ‖x‖A+ .

So, Assumption 8 implies that

‖∇f(x)−∇f(x− z)‖G(x)+ ≤ LG‖z‖G(x). (10)

We show in Theorem 4 that with different combinations of
assumptions, GeNGA is guaranteed to converge to a desir-
able solution from a semi-Riemannian point of view, with-
out the need for Assumption 7. That is, either f(xi)→∞
or the magnitude of the generalized natural gradient (mea-
sured using the seminorm of the semi-Riemannian mani-
fold) goes to zero:

Theorem 4. If either of the following sets of assumptions
are satisfied:

1. Assumptions 1, 3, 5, and 8,

2. Assumptions 1, 3, 4, 6, and 8,

then the sequence, (xi)
∞
i=1 produced by GeNGA causes ei-

ther f(xi) → ∞ or else f(xi) converges to a finite value
and lim infi→∞‖∇̃f(xi)‖Gi = 0.

Proof. We adapt a proof that ordinary gradient descent
converges (Bertsekas & Tsitsiklis, 1997). For any x, z ∈
Rn, let g(ξ) := f(x− ξz), where ξ ∈ R. Then

f(x− z)− f(x) =g(1)− g(0)

=

∫ 1

0

∇g(ξ) dξ

=−
∫ 1

0

zᵀ∇f(x− ξz) dξ.

Adding
∫ 1

0
zᵀ(∇f(x)−∇f(x)) = 0, we get

f(x− z)− f(x) = −
∫ 1

0

zᵀ∇f(x) dξ

−
∫ 1

0

zᵀ (∇f(x− ξz)−∇f(x)) dξ

=− zᵀ∇f(x)−
∫ 1

0

zᵀ (∇f(x− ξz)−∇f(x)) dξ.

Let z := −αih(x, v) and x := xi. Then

f(xi − z)− f(xi) = αih(x, v)ᵀ∇f(xi)

−
∫ 1

0

αih(x, v)ᵀ (∇f(xi)−∇f(xi − ξz)) dξ

=αi
(
G+
i ∇f(xi) +

[
I −G+

i Gi
]
v
)ᵀ∇f(xi)

−
∫ 1

0

αi
(
G+
i ∇f(xi) +

[
I −G+

i Gi
]
v
)ᵀ

(∇f(xi)−∇f(xi − ξz)) dξ

=αi∇f(xi)
ᵀG+

i ∇f(xi)

+ αiv
ᵀ
[
I −GiG+

i

]
∇f(xi) (11)

−
∫ 1

0

αi∇f(xi)
ᵀG+

i (∇f(xi)−∇f(xi − ξz)) dξ

−
∫ 1

0

αiv
ᵀ
[
I −GiG+

i

]
(∇f(xi)−∇f(xi − ξz)) dξ.

(12)

If the first set of assumptions hold, then by Assumption 5,
GG+∇f(x) = ∇f(x) and GG+∇f(x − ξz) = ∇f(x −
ξz), so the terms on lines (11) and (12) are zero. If the sec-
ond set of assumptions hold, then by Assumptions 4 and 6,
GG+∇f(x) = ∇f(x) and v = 0, so the terms on lines
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(11) and (12) are zero. So, in both cases we get:

f(xi − z)− f(xi) ≥ αi∇f(xi)
ᵀG+

i ∇f(xi)

−
∫ 1

0

αi∇f(xi)
ᵀG+

i (∇f(xi)−∇f(xi − ξz)) dξ

≥αi ‖∇f(xi)‖2G+
i

−
∫ 1

0

αi‖∇f(xi)‖G+
i
‖∇f(xi)−∇f(xi − ξz)‖G+

i
dξ,

by the Cauchy-Schwarz inequality for semi-inner-product
spaces. By (10), which followed from Assumption 8,

f(xi − z)− f(xi) ≥ αi ‖∇f(xi)‖2G+
i

−
∫ 1

0

αi‖∇f(xi)‖G+
i
LG‖ξz‖Gi dξ

=αi ‖∇f(xi)‖2G+
i

−
∫ 1

0

α2
iLGξ‖∇f(xi)‖G+

i
‖h(x, v)‖Gi

dξ. (13)

Notice that

‖h(x, v)‖2Gi
=h(x, v)ᵀGih(x, v)

=
(
G+
i ∇f(xi) +

[
I −G+

i Gi
]
v
)ᵀ

Gi
(
G+
i ∇f(xi) +

[
I −G+

i Gi
]
v
)

=
(
∇f(xi)

ᵀG+
i + vᵀ

[
I −GiG+

i

])
GiG

+
i ∇f(xi)

=∇f(xi)
ᵀG+

i GiG
+
i ∇f(xi)

=∇f(xi)
ᵀG+

i ∇f(xi)

=‖∇f(xi)‖2G+
i

.

So, continuing (13), we have

f(xi − z)− f(xi) ≥ αi ‖∇f(xi)‖2G+
i

−
∫ 1

0

α2
iLGξ‖∇f(xi)‖2G+

i

dξ

=αi ‖∇f(xi)‖2G+
i
− α2

iLG‖∇f(xi)‖2G+
i

∫ 1

0

ξ dξ

=αi ‖∇f(xi)‖2G+
i
− α2

iLG
2
‖∇f(xi)‖2G+

i

.

So,

f(xi+1) ≥f(xi) + αi

(
1− αiLG

2

)
‖∇f(xi)‖2G+

i

=f(xi) + αi

(
1− αiLG

2

)
‖G+

i ∇f(xi)‖2Gi
.

Since αi → 0, we have for some positive constant c and all
i greater than some index ī,

f(xi+1) ≥ f(xi) + αic‖G+
i ∇f(xi)‖2Gi

. (14)

From this relation, we see that for i ≥ ī, f(xi) is mono-
tonically nondecreasing, so either f(xi) → ∞ or f(xi)
converges to a finite value. If the former case holds we are
done, so assume the latter case. By adding (14) over all
i ≥ ī, we obtain

c

∞∑
i=ī

αi‖G+
i ∇f(xi)‖2Gi

≤ lim
i→∞

f(xi)− f(xī) <∞.

We see that there cannot exist an ε > 0 such that
‖G+

i ∇f(xi)‖2Gi
> ε for all i greater than some î, since

this would contradict the assumption
∑∞
i=0 αi = ∞.

Therefore, we must have lim infi→∞‖G+
i ∇f(xi)‖Gi

=

0. This implies our result since ‖∇̃f(xi)‖G(xi) =

‖G+
i ∇f(xi)‖Gi .

In some cases it can be challenging to show that the
Riemann-Lipschitz assumption (Assumption 8) is satisfied.
We therefore introduce a new assumption that can be used
together with Assumption 2 to imply Assumption 8:

Assumption 9. There exists a positive scalar c3 such that
for all x, z ∈ Rn, ‖z‖2 ≤ c3‖z‖G(x). •

Notice that Assumption 9 can only be satisfied if G is al-
ways positive definite.

Lemma 1. Assumptions 2 and 9 imply Assumptions 6
and 8.

Proof. Assumption 9 implies that G(x) is always positive
definite, so Assumption 6 is satisfied. Next we show that
Assumptions 2 and 9 imply Assumption 8.

‖∇f(x)−∇f(x− z)‖2G+

=(∇f(x)−∇f(x− z))ᵀG+(∇f(x)−∇f(x− z))
=
〈
G+(∇f(x)−∇f(x− z)), (∇f(x)−∇f(x− z))

〉
2

≤‖G+(∇f(x)−∇f(x− z))‖2‖∇f(x)−∇f(x− z)‖2
≤‖G+(∇f(x)−∇f(x− z))‖2‖z‖2 (15)

≤c23‖G+(∇f(x)−∇f(x− z))‖G‖z‖G (16)

=c23‖∇f(x)−∇f(x− z)‖G+‖z‖G.

where (15) comes from Assumption 2 and (16) comes from
Assumption 9. Dividing both sides of the inequality by
‖∇f(x) − ∇f(x − z)‖G+ , which is always positive, we
have

‖∇f(x)−∇f(x− z)‖G+ ≤c23‖z‖G,

and hence Assumption 8 is satisfied with LG = c23.

Notice that Assumptions 2 and 9 together are more restric-
tive than Assumption 8, so if they are not satisfied, it does
not mean that Assumption 8 is also not satisfied.
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Not only can we use Lemma 1 to replace Assumptions 6
and 8 with Assumptions 2 and 9 in the requirements for
Theorem 4, but we can use Assumption 9 to provide a
stronger guarantee:

Theorem 5. If Assumptions 1, 2, 3, 4, and 9 hold, then
the sequence, (xi)

∞
i=1 produced by GeNGA causes either

f(xi) → ∞ or else f(xi) converges to a finite value and
lim infi→∞‖∇̃f(xi)‖2 = lim infi→∞‖∇̃f(xi)‖Gi = 0.

Proof. We have from Theorem 4 and Lemma 1 that ei-
ther f(xi) → ∞ or lim infi→∞‖∇̃f(xi)‖Gi

= 0. If the
former case holds we are done, so assume the latter case.
By Assumption 9, lim infi→∞‖∇̃f(xi)‖Gi

= 0 implies
lim infi→∞‖∇̃f(xi)‖2 = 0.

5. Generalized Natural Policy Gradient
Methods

In the previous sections we introduced GeNGA and ana-
lyzed its convergence properties. In this section we con-
sider a field, reinforcement learning, where NGA has been
applied even though the domain of the function being opti-
mized is not guaranteed to be a Riemannian manifold, but
is guaranteed to be a semi-Riemannian manifold.

Reinforcement learning algorithms search for “good” poli-
cies for Markov decision processes (MDPs). Policies are
distributions that are typically parameterized by a vector
θ ∈ Rn. An objective function J : Rn → R is selected
to capture the desired properties of good policies. Our re-
sults apply to the standard average-reward and discounted-
reward objective functions (Sutton et al., 2000). Policy
search algorithms search for θ that maximize J . (Natural)
policy gradient algorithms estimate and ascend the (natu-
ral) gradient of J .

Natural policy gradient algorithms typically assume that
G(θ) is positive definite and thus invertible. This is not
the case for popular policy parameterizations like tabular
softmax action selection when G is the (average) Fisher in-
formation matrix (see Section 6.4 for an example). In this
section, we remove this assumption.

Some natural policy gradient algorithms estimateG(θ) and
∇J(θ) and then select ∇̃J(θ) = G(θ)−1∇J(θ) (Bhatna-
gar et al., 2009). This can be easily corrected to ∇̃J(θ) =
G(θ)+∇J(θ), which is a generalized natural gradient of
J at θ. However, other natural policy gradient algorithms
form estimates of the natural gradient directly, without es-
timating G(θ). We show that, without modification, they
perform generalized natural gradient ascent.

We will consider w ∈ Rn that satisfy Assumption 10,
which comes from the combination of a standard constraint
(Sutton et al., 2000, Equation 3) with the standard defini-

tion of G(θ) (Kakade, 2002, Equation 2):

Assumption 10. ∇J(θ) = G(θ)w. •

The natural policy gradient theorem, states that if w is
chosen to satisfy Assumption 10, then G(θ)−1∇J(θ) =
w (Kakade, 2002, Theorem 1). This is useful because
accurate estimates of w that satisfy Assumption 10 can
be formed from small amounts of data using temporal-
difference learning algorithms (Peters & Schaal, 2008).
However, this clearly requires that G(θ) is invertible.

Although NGA is not applicable when G is singular,
GeNGA is. We extend the natural policy gradient theorem
to allow for positive semidefinite G(θ). We find that every
w that satisfies Assumption 10 is still a generalized natural
gradient (unnormalized direction of steepest ascent) of J at
θ.

Theorem 6 (Generalized Natural Policy Gradient Theo-
rem). If w is selected such that Assumption 10 holds, then
w is a generalized natural gradient of J at θ and every gen-
eralized natural gradient is given by a w that satisfies As-
sumption 10.

Proof. The w that satisfy Assumption 10 are all given by

w = G(θ)+∇J(θ) +
(
I −G(θ)+G(θ)

)
v,

for some v. Every solution to G(θ)w = ∇J(θ) is given by
this equation for some v, and every v produces a solution.
Notice from (3) that this is merely h(θ, v). By (7), these w
are the generalized natural gradients.

This means that natural policy gradient algorithms that use
w that satisfy Assumption 10 as their steepest ascent direc-
tions are already implementing GeNGA, and will therefore
work properly when G(θ) is positive semidefinite. This is
important because most natural policy gradient algorithms
work this way (Morimura et al., 2005; Peters & Schaal,
2008; Bhatnagar et al., 2009; Degris et al., 2012). Al-
though the algorithms are correct, convergence proofs that
assume that G(θ) is always positive definite (Bhatnagar
et al., 2009) do not apply when G(θ) is only guaranteed
to be positive semidefinite.

6. Examples
In this section we give examples to ground the preceding
theory.

6.1. Convergence by Theorem 3

We present an example where Theorem 3 can be applied.
Let f(x) := −x2, G(x) = 2 + sin(x), αi = 1

i , and x1

be any finite value. It is straightforward to show that As-
sumptions 1, 2, 3, 4, and 7 hold. So by Theorem 3, GeNGA
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causes either f(xi)→∞ or limi→∞‖∇f(xi)‖ = 0. Since
f(x) is bounded above, only the latter can occur.

6.2. Convergence by Theorem 4

Consider the application of NGA to f(x) =
−(xᵀ[1,−1]ᵀ)2, where x ∈ R2. Let x1 = [1,−1]ᵀ,
αi = 1

i , and

G(x) :=

[
1 −1
−1 1

]
.

Notice that this G is positive semidefinite but not positive
definite. At each step, there will be an infinite number of di-
rections of steepest ascent. In some cases you cannot guar-
antee that v = 0 is selected, for example, when using the
generalized natural policy gradient theorem (Theorem 6).
For this example, we select v = [t, t]ᵀ.

Since (9) in Assumption 7 is not satisfied and Assump-
tion 9 is not satisfied, Theorems 3 and 5 are not applicable.
Similarly, Assumption 6 is not satisfied, so we cannot use
the second set of requirements for Theorem 4. However,
since Assumptions 1, 3, 5, and 8 are satisfied, by Theo-
rem 4, the sequence, (xi)

∞
i=1 produced by NGA causes ei-

ther f(xi) → ∞ or else f(xi) converges to a finite value
and lim infi→∞‖∇̃f(xi)‖Gi

= 0. Since f(x) is bounded
above, only the latter can occur.

6.3. Convergence by Theorem 5

Consider the application of NGA to f(x) = − 1
2 (x− 10)2,

where x ∈ R. Let x1 = 1, αi = 0.1
i , and

G(x) :=

{
1

2−x if x ∈ [1, 2)

1 otherwise.

This G is positive (definite) and Assumptions 1, 2, 3,
4, and 9 are satisfied. So, by Theorem 5, the se-
quence, (xi)

∞
i=1 produced by NGA causes either f(xi) →

∞ or else f(xi) converges to a finite value and
lim infi→∞‖∇̃f(xi)‖2 = lim infi→∞‖∇̃f(xi)‖Gi = 0.
Notice that (8) in Assumption 7 is not satisfied, so the re-
quirements of Theorem 3 are not satisfied. This is an in-
teresting example because it showcases the difference be-
tween the convergence guarantees of Theorems 3 and 5.

The GeNGA update when x ∈ [1, 2) is

xi+1 = xi +
x2 − 12x+ 20

10i
.

It can be shown that this update causes xi → 2 with-
out leaving the [1, 2) interval. This example is de-
picted in Figure 1. Notice that lim infi→∞‖∇̃f(xi)‖2 =

lim infi→∞‖∇̃f(xi)‖Gi = 0, but neither f(xi) → ∞

0 5 10 15 20
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-30

-20
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0

x

Figure 1. Sequence produced by NGA on the example from Sec-
tion 6.3. The black curve is f and the points depict the sequence
(xi)

∞
i=1, where x1 is blue and xi is dark red for large i. Notice

that, from a Euclidean perspective, NGA converges prematurely.

nor lim infi→∞‖∇f(xi)‖2 = 0. That is, from a semi-
Riemannian point of view, the algorithm did the correct
thing—it moved an infinite distance towards the global
maximum. However, from the Euclidean point of view, this
only got it to 2.

6.4. Tabular Softmax Policies

Next, we present a simple reinforcement learning example
where Assumption 5 is satisfied. This example also shows
how the metric tensor can be positive semidefinite and not
positive definite when using a common policy parameteri-
zation.

Consider any MDP with one state and two actions. We use
a softmax policy parameterization. That is, the policy has
parameter vector θ ∈ R2 and the probability of action i is
given by

πθ(i) :=
eθi

eθ1 + eθ2
.

Natural policy gradient methods typically use the average
Fisher information matrix (Bagnell & Schneider, 2003) as
their metric tensor. In this case:

G(θ) :=

2∑
i=1

πθ(i)
∂ log πθ(i)

∂θ

∂ log πθ(i)

∂θ

ᵀ

=πθ(1)πθ(2)

[
1 −1
−1 1

]
.

First, notice that G(θ) is positive semidefinite but not pos-
itive definite, and so GeNGA is required (in fact, a tabular
softmax policy for any finite number of states and actions
will result in G(θ) always being singular). Second, notice
that the columns of G(θ) span all vectors in R2 that sum to
zero.

This raises the question, why is it appropriate for G(θ)
to not be positive definite? Allowing G(θ) to be positive
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semidefinite means that there are vectors, ∆θ, such that
∆θᵀG(θ)∆θ = ‖∆θ‖2G(θ) = 0. When computing the di-
rections of steepest ascent, this means that there is a direc-
tion away from θ that does not incur any distance.

This is desirable when moving in the direction ∆θ from
θ does not change the distribution being optimized (in our
case, the policy). Notice that we are parameterizing a dis-
tribution over two possible events. This should require only
one parameter—the probability of one of the events, since
the probability of the other is one minus this probability.
However, our tabular softmax policy has two parameters.
So, there are directions of change to the tabular softmax
policy parameters that result in no change to the action
probabilities (specifically, adding the same amount to both
policy parameters). Moving along this direction should not
incur distance when computing the directions of steepest
ascent.

In this case, the gradient of the standard objective func-
tions, J , at any θ′, can both be written as (Sutton et al.,
2000):

∇J(θ′) =

2∑
i=1

Qθ′(i)
∂ log πθ′(i)

∂θ′
,

where Qθ′ is a bounded real-valued function and θ′ are any
policy parameters. Since

∂ log πθ′(1)

∂θ′
=πθ′(2)

[
1
−1

]
∂ log πθ′(2)

∂θ′
=πθ′(1)

[
−1

1

]
,

we have that ∇J(θ′) must be a vector in R2 that sums to
zero, and hence it is in the column span of G(θ). So, As-
sumption 5 is satisfied.

6.5. Divergence of NGA for Policy Search

We showed in Theorem 1 that NGA can diverge. How-
ever, in that example we did not use the Fisher informa-
tion matrix. This raises the question, can GeNGA, using
the Fisher information matrix, diverge when optimizing a
parameterized distribution, or does the Fisher information
matrix introduce some properties that ensure convergence?
We show that GeNGA can still diverge in this setting. In
this example the Fisher information matrix is not always
positive definite, so this example can not be used in place
of the one used to prove Theorem 1.

Consider a bandit problem (one-state MDP with reward-
discount parameter γ = 0) with two actions, a1 and a2.
Let the reward for taking action a1 be 1 and the reward for
taking action a2 be 0. In this setting, J(θ) = Pr(a1). We
parameterize the policy with a single parameter, θ ∈ R,

such that Pr(a1|θ) = f(θ), where

f(θ) :=

{
1

2θ2 + 1
2 if θ 6∈ [−2, 2]

− θ
2

32 + 3
4 otherwise.

J(θ) = f(θ), so hereafter we discuss maximizing f . Also
notice that, although f is defined in a piecewise manner, it
is continuously differentiable and its derivative is Lipschitz.
Let αi = 4

i and θ1 = 5. Ordinary gradient ascent on f
causes θi → 0 in this setting (Bertsekas & Tsitsiklis, 2000),
and θ = 0 is a global maximum of f .

In this case, the Fisher information matrix can be written as

G(θ) :=
∇f(θ)2

f(θ) (1− f(θ))

=

{
4

θ6−θ2 if θ 6∈ [−2, 2]
−4θ2

(θ2−24)(θ2+8) otherwise.

So, when θi 6∈ [−2, 2], the GeNGA update is

θi+1 =θi + αiG(θi)
−1∇f(θi)

=θi +
1

iθi
− θ3

i

i
.

Since this sequence diverges without entering the [−2, 2]
interval, we have that GeNGA causes |θi| → ∞while ordi-
nary gradient ascent causes θi → 0 (the global maximum).

7. Conclusion and Future Work
We presented GeNGA, a generalization of NGA to allow
for positive semidefinite (possibly non-smooth) metric ten-
sors. Next, we provided sufficient conditions to ensure
that the sequences generated by GeNGA achieve different
forms of convergence. We then showed how existing nat-
ural policy gradient algorithms could easily be updated to
use GeNGA or already use GeNGA. Lastly, we provided
examples to showcase the different types of convergence.

All of our convergence guarantees are for deterministic
NGA and GeNGA. They do not apply when ∇̃f(x) is not
known, but noisy, biased estimates of it can be generated.
It is straightforward to apply existing results in this set-
ting if Assumption 7 holds (Bertsekas & Tsitsiklis, 2000).
One avenue of future work would be to extend Theorems
4 and 5 to provide convergence guarantees in this setting,
even when Assumption 7 does not hold.
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